当前位置:主页 > 医学论文 > 心血管论文 >

UVRAG基因在自噬及心脏结构功能维持中的作用

发布时间:2018-12-14 22:15
【摘要】:UVRAG(ultraviolet radiation resistance-associated gene)最初发现于着色性干皮病细胞中,它能部分地恢复该细胞对紫外线的耐受。后来UVRAG被鉴定为一个肿瘤抑制基因,并且有多种生物学功能,例如细胞自噬,细胞Qg吞和DNA修复等。近来,大量的研究增加了对UVRAG的结构和多种生物学功能的理解,但是其生理学功能依然所知甚少。利用piggyBac(PB)转座子插入产生的UVRAG基因敲除小鼠模型,我们研究UVRAG在心脏细胞自噬和维持心脏形态和功能中的作用。PB转座子插入位点位于UVRAG基因的第十四个内含子,RT-PCR实验结果显示,PB转座子的插入干扰小鼠心脏组织UVRAG mRNA的表达。免疫印迹实验结果显示,敲除小鼠心脏、肝脏、脾脏、肺、骨骼肌和脑等组织中无UVRAG蛋白表达。但UVRAG缺失(UVRAGPB/PB)小鼠依旧可存活,有繁殖能力,发育正常。免疫印迹结果显示UVRAG缺失小鼠心脏中LC3 II蛋白显著提高,提示其自噬体数量增加。LC3免疫荧光染色结果显示UVRAG缺失心脏细胞中LC3阳性荧光点状结构数量显著增加。透射电镜结果显示,uvrag缺失心脏中自噬体数量显著增加。自噬体合成增加和自噬清除受损均可导致自噬体数量增加。免疫印迹显示uvrag缺失心脏中p62蛋白含量增加,提示自噬流受损。与野生型相比,uvrag缺失小鼠心脏lc3ii蛋白水平增加,氯喹(chloroquine)处理小鼠阻断自噬体溶酶体融合后,野生型小鼠心脏lc3ii显著提高,但是uvrag缺失心脏lc3ii与处理前相比没有显著差异。表明uvrag缺失心脏中自噬流受损,自噬体清除受阻导致自噬体累积。westernblot结果显示uvrag缺失心脏溶酶体分子标记物lamp-1和lamp-2都显著增加。在小鼠胚胎成纤维细胞(mefs)中,uvrag的缺失也导致自噬流受损,自噬体数量增加。在心脏形态和功能方面,两月龄和六月龄uvrag缺失小鼠心脏拥有与野生型小鼠一样的形态和功能。但十月龄uvrag缺失小鼠心脏体积显著大于野生型对照组。心脏组织横截面切片染色显示,uvrag缺失小鼠心脏横截面变大,左心室室腔变大,心室壁变薄。he染色结果揭示,与野生型相比uvrag缺失小鼠单位视野内心肌细胞数量较少,单个心肌细胞横截面显著增加。表明十月龄时uvrag缺失小鼠出现心肌肥厚。天狼猩红染色结果显示,十月龄uvrag缺失小鼠心脏出现间质胶原累积。实时定量pcr结果显示,十月龄uvrag缺失心脏心室重构分子标记物表达量显著升高,例如心钠素(anf)和脑钠肽(bnp)。免疫印迹实验结果显示,十月龄uvrag缺失小鼠心脏组织bax蛋白水平高于野生型对照组。tunel(terminal-deoxynucleoitidyltransferasemediatednickendlabeling)检测小鼠心脏切片,结果显示与野生型相比十月龄uvrag缺失小鼠心脏细胞凋亡数量显著增加。实时定量pcr结果显示,十月龄uvrag缺失心脏促炎性细胞因子表达量显著增加,例如白细胞介素-6(interleukin-6,il-6)和肿瘤坏死因子-α(tumournecrosisfactor-α,tnfα)。免疫组织化学染色检测结果显示uvrag缺失心脏cd45和cd45r阳性信号显著增加,表明心脏组织中有炎性细胞浸润。实时荧光定量pcr显示,十月龄uvrag缺失小鼠心脏树突细胞分子标记物cd11c表达量显著高于野生型,单核细胞趋化因子mcp-1显著增加,而巨噬细胞前体细胞分子标记物f4/80,m1型巨噬细胞分子标记物cd68,m2型巨噬细胞cd163等均与野生型无显著差异。脂多糖(lps)处理实验小鼠,诱导产生脓血症模型,促炎性因子显著提高,但uvrag缺失小鼠与野生型小鼠相比无显著差异,表明在小鼠心脏中,uvrag缺失与lps诱导的促炎性因子的表达无直接关系。超声心动图结果显示,十月龄uvrag缺失小鼠心脏左心室舒张末期内径(lvedd)和左心室收缩末期内径(lvesd)显著增加,左心室后壁收缩后期厚度(lvpws)降低,射血分数(ef%)和左心室短轴缩短率(%fs)减小,表明其心脏功能受损。这些证据表明uvrag缺失小鼠出现年龄相关肥厚性心肌病,并伴随心脏功能下降。总之,本研究结果表明,UVRAG在心脏自噬和维持小鼠心脏结构和功能上起重要作用。
[Abstract]:UVRAG, originally found in pigmented dry skin cells, can partially restore the cell's tolerance to ultraviolet light. UVRAG is then identified as a tumor suppressor gene and has a variety of biological functions, such as cell autophagy, cell Qg endocytosis, and DNA repair. Recently, a large number of studies have increased understanding of the structure and various biological functions of the UVRAG, but its physiological function is still known to be less. The effects of UVRAG in the autophagy and the maintenance of the heart morphology and function of the heart cells were investigated by using the pigyBac (PB) transposon to insert the resulting UVRAG knockout mouse model. The insertion site of the PB transposon is located at the fourteenth intron of the UVRAG gene, and the RT-PCR results show that the insertion of the PB transposon interferes with the expression of the UVRAG mRNA in the heart tissue of the mouse. The results of immunoblotting showed that no UVRAG protein was expressed in the heart, liver, spleen, lung, skeletal muscle and brain of the knockout mice. However, the UVRAG-deficient (UVRAGPB/ PB) mice were still alive, with reproductive capacity and normal development. The immunoblotting showed that the LC3 II protein in the heart of the UVRAG-deficient mice was significantly increased, suggesting an increase in the number of autophagy bodies. The LC3 immunofluorescent staining showed a significant increase in the number of LC3-positive fluorescent dot structures in the UVRAG-deficient cardiac cells. The transmission electron microscopy (TEM) showed that the number of autophagy in uvag was significantly increased in the heart. The increase in autophagy synthesis and the removal of autophagy can result in an increase in the number of autophagy bodies. Immunoblotting showed an increase in the content of p62 protein in the uvag-deleted heart, suggesting that autophagy was impaired. The wild-type mouse heart lc3ii was significantly increased compared to the wild-type mouse heart lc3ii protein, and the wild-type mouse heart lc3ii was significantly increased after the mice blocked the autophagy-lysosome fusion, but the uvag-deleted heart lc3ii did not differ significantly compared to the pre-treatment. It was shown that uvag was damaged from the autophagy in the heart of the missing heart and the autophagy removal was hindered by the accumulation of autophagy. Western blot showed that uvag deletion of the cardiac lysosomal molecular markers lamp-1 and lamp-2 increased significantly. In mouse embryonic fibroblasts (mfs), the deletion of uvag also resulted in a loss of autophagy and an increase in the number of autophagy bodies. In terms of heart morphology and function, the two-month-old and 6-year-old uvag-deficient mice heart had the same morphology and function as wild-type mice. However, the heart volume of the deficient mice in uvag in October was significantly greater than that of the wild-type control group. The cross-sectional slides of the heart tissue showed that the cross-section of the cardiac tissue of the uvag-deficient mice was large, the chamber of the left ventricle was large, and the ventricular wall was thin. As a result of he staining, the number of myocardial cells in the field of visual field of the uvag-deleted mouse was less than that of the wild-type, and the cross-section of a single cardiac muscle was significantly increased. The presence of cardiac hypertrophy in uvag-deleted mice at the age of October was shown. The results showed that there was an accumulation of interstitial collagen in the heart of uvag-deleted mice in October. The real-time quantitative pcr results show a significant increase in the expression of the cardiac ventricular remodeling molecular markers, such as atrial natriuretic peptide (anf) and brain natriuretic peptide (bnp), in the 10-year-old uvag-deficient cardiac ventricular remodeling. The results of the immunoblotting test show that the level of bax protein in the heart tissue of the mouse of uvag in October is higher than that of the wild-type control group. The results showed that the number of apoptosis in the heart of the mouse was significantly increased in the 10-year-old uvag-deficient mice compared with the wild-type. The real-time quantitative pcr shows that the amount of pro-inflammatory cytokine expression was significantly increased in the october age uvag, for example, interleukin-6 (interleukin-6, il-6), and tumor necrosis factor-1 (tnf). The results of the immunohistochemical staining showed that the ccd45 and cd45r positive signals of uvirag were significantly increased, indicating that there was inflammatory cell infiltration in the cardiac tissue. real-time fluorescence quantitative pcr shows that the amount of cd11c expression of the mouse heart dendritic cell molecular marker cd11c is significantly higher than that of the wild type, the monocyte chemokines mcp-1 are significantly increased in the october age uvag, and the macrophage precursor cell molecular marker f4/ 80, the m1-type macrophage molecular marker cd68, There was no significant difference in type 2 macrophage cd163 and the like with wild type. Lipopolysaccharide (lps) treated the experimental mice to induce a sepsis model, and the pro-inflammatory factor was significantly increased, but the uvag-deficient mice were not significantly different from the wild-type mice, suggesting that the absence of uvag in the heart of the mice was not directly related to the expression of lps-induced inflammatory factors. The results of the echocardiography show that the left ventricular end-diastolic diameter (lvedd) and the left ventricular end-systolic diameter (lvesd) of the heart left ventricular end-diastolic diameter (lvpws) of the left ventricular end wall of the 10-year-old uvag-deficient mice are significantly increased, and the post-systolic thickness (lvpws) of the left ventricle is reduced, The reduction of the injection blood fraction (ef%) and the left ventricular short-axis shortening (% fs) indicates that its heart function is impaired. These evidence indicated age-related hypertrophic cardiomyopathy in uvag-deficient mice and accompanied by a decrease in cardiac function. In conclusion, the results of this study show that the UVRAG plays an important role in the heart autophagy and the maintenance of the heart structure and function of the mouse.
【学位授予单位】:上海交通大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:R541

【相似文献】

相关期刊论文 前10条

1 叶青;郑民华;;自噬的分子机制与病理生理意义[J];国际病理科学与临床杂志;2007年04期

2 何韬;王海杰;谭玉珍;;自噬在细胞存活和死亡中的作用[J];生理科学进展;2008年01期

3 张志才;邵增务;;自噬分子机制的研究进展[J];现代生物医学进展;2008年01期

4 赵勇;师长宏;伍静;张海;;自噬的形态特征及分子调控机制[J];中国比较医学杂志;2010年10期

5 王梅;李庆林;;自噬与癌症的治疗[J];安徽医药;2010年08期

6 伍静;赵勇;师长宏;张海;;自噬的形态特征及分子调控[J];现代生物医学进展;2010年20期

7 王雄;谭璐;;自噬研究进展[J];亚太传统医药;2010年10期

8 卞龙艳;;运动与自噬的关系进展研究[J];齐齐哈尔医学院学报;2011年07期

9 王伟;徐忠东;陶瑞松;;肿瘤发生过程中自噬与凋亡关系的研究[J];合肥师范学院学报;2011年06期

10 王光辉;;自噬与疾病[J];生物化学与生物物理进展;2012年03期

相关会议论文 前10条

1 韦雪;漆永梅;张迎梅;;镉、活性氧自由基与自噬发生的分子机制[A];中国活性氧生物学效应学术会议论文集(第一册)[C];2011年

2 秦正红;粱中琴;陶陆阳;黄强;刘春风;蒋星红;倪宏;邢春根;;自噬在细胞生存与死亡中的作用[A];中国药理学会第九次全国会员代表大会暨全国药理学术会议论文集[C];2007年

3 秦正红;;自噬与肿瘤和神经细胞生存——药物作用的新靶位[A];全国生化与分子药理学药物靶点研讨会论文摘要集[C];2008年

4 李芹;丁壮;;自噬功能研究进展[A];中国畜牧兽医学会家畜传染病学分会第八届全国会员代表大会暨第十五次学术研讨会论文集[C];2013年

5 胡晨;张璇;滕衍斌;胡海汐;周丛照;;家蚕中自噬相关蛋白Atg8的结构研究[A];华东六省一市生物化学与分子生物学会2009年学术交流会论文摘要汇编[C];2009年

6 陈希;李民;Xiao-Ming Yin;李林洁;;通过不同途径诱导自噬的化合物对Atg9的依赖性不同[A];细胞—生命的基础——中国细胞生物学学会2013年全国学术大会·武汉论文摘要集[C];2013年

7 陈涓涓;敬静;蔡元博;张俊龙;;针对活体细胞自噬行为的发光金属配合物的设计[A];中国化学会第28届学术年会第8分会场摘要集[C];2012年

8 宁晓洁;钟自彪;王彦峰;付贞;叶启发;;缺血再灌注诱导小鼠肝细胞自噬[A];2013中国器官移植大会论文汇编[C];2013年

9 吴晓琦;李丹丹;邓蓉;江山;杨芬;冯公侃;朱孝峰;;CaMKKβ磷酸化Beclin 1调控自噬及其在肿瘤治疗中的作用[A];2011医学科学前沿论坛第十二届全国肿瘤药理与化疗学术会议论文集[C];2011年

10 周鸿雁;裴中;陈杰;申存周;钱浩;刘妍梅;冼文彪;郑一帆;陈玲;;线粒体动力改变参与了LRRK2突变导致的自噬[A];中华医学会第十三次全国神经病学学术会议论文汇编[C];2010年

相关重要报纸文章 前3条

1 生命学院;俞立课题组在《科学》发文揭示自噬调控的重要机制[N];新清华;2012年

2 周飞 张粹兰;花榈木“自噬”可抗癌[N];广东科技报;2011年

3 张明永;水稻自噬基因研究取得新进展[N];广东科技报;2011年

相关博士学位论文 前10条

1 贾盛楠;转录因子p8调控自噬的功能研究[D];浙江大学;2015年

2 皮会丰;DNM1L蛋白介导的线粒体自噬在镉致肝脏毒性中的作用研究[D];第三军医大学;2015年

3 李倩;miRNAs介导的自噬抑制在类鼻疽杆菌感染免疫逃逸中的作用机制研究[D];第三军医大学;2015年

4 黎炳护;激活TRPV1诱导自噬在血管平滑肌细胞泡沫化中作用及机制研究[D];第三军医大学;2015年

5 陈江伟;自噬在椎间盘退变中的作用及机制研究[D];上海交通大学;2014年

6 李荣荣;自噬在布比卡因肌毒性中的作用及机制研究[D];南京医科大学;2015年

7 王维;NF-κB信号通路参与介导的自噬在高血压大鼠心血管重构的作用研究[D];山东大学;2015年

8 刘春朋;日粮硒缺乏对鸡肝脏蛋白质组学及自噬变化的影响[D];东北农业大学;2015年

9 梁蓓蓓;P53凋亡刺激蛋白ASPP2调控细胞自噬的研究[D];上海交通大学;2012年

10 李少莹;自噬在LPS诱导的肺泡上皮细胞死亡中的作用及机制研究[D];第三军医大学;2015年

相关硕士学位论文 前10条

1 匡红;Jnk2通过smARF的降解来调控压力诱导的线粒体自噬及组织损伤[D];浙江理工大学;2015年

2 洪永桃;自噬在类风湿关节炎滑膜成纤维细胞中的作用及甲氨蝶呤对自噬的影响[D];川北医学院;2015年

3 李宁;自噬在吗啡心肌保护中的作用及机制研究[D];河北联合大学;2014年

4 刘冰;脑缺血预处理对大鼠局灶性脑缺血再灌注后自噬及凋亡的影响[D];河北联合大学;2014年

5 王存凯;microRNA-30a-5p通过抑制自噬阻止肝星状细胞激活[D];河北医科大学;2015年

6 张宇程;泛素连接酶HOIL-1L在线粒体自噬中的功能与机制研究[D];中国人民解放军军事医学科学院;2015年

7 唐芙蓉;自噬对奶山羊雄性生殖干细胞生物学特性的影响[D];西北农林科技大学;2015年

8 陈军童;肾损伤分子1对高糖诱导人肾小管上皮细胞自噬作用的影响[D];郑州大学;2015年

9 包勇;Kap1在LBH589诱导的乳腺癌细胞MCF-7自噬形成中的作用[D];复旦大学;2013年

10 魏园玉;P53缺失型HL-60白血病细胞内Nucleostemin下调对mTOR通路介导的自噬活性的影响[D];郑州大学;2015年



本文编号:2379410

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/xxg/2379410.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户0ffdd***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com