视网膜色素变性T17M视紫红质突变诱导细胞死亡的机制研究
[Abstract]:Chapter 1 subcellular localization of rhodopsin T17M mutant
Objective: To study the subcellular localization and significance of rhodopsin T17M mutant.
Methods: pCDNA-3.1-T17M rhodopsin-myc plasmids and pCDNA-3.1-WT rhodopsin-myc plasmids were constructed and identified by EcoR I and BamH I double enzyme digestion and gene sequencing. The constructed plasmids were transfected into HEK293 cells, and Western blot was used to detect the differences in the expression of rhodopsin T17M mutants and wild type proteins. Immunofluorescence microscopy was used. Subcellular localization of rhodopsin T17M mutant and wild type was observed.
Results: after PCR amplification and double enzyme digestion, the 1000bp size bands were obtained. Gene sequencing showed that fiftieth base C was transformed into T, and pCDNA-3.1-T17M rhodopsin-myc plasmids and pCDNA-3.1-WT rhodopsin-myc plasmids were successfully constructed. After plasmid transfection, Western blot detected approximately 40KD bands. The transfection could efficiently express rhodopsin T17M mutation The fluorescence microscope showed that the T17 mutant of rhodopsin was clustered in the endoplasmic reticulum, and there was no co location with the Golgi body, while the wild type was mainly in the cell membrane.
Conclusion: the rhodopsin T17M mutant is located in the endoplasmic reticulum and has no co localization with Golgi apparatus. The rhodopsin type is mainly located in the cell membrane.
The second chapter of degradation pathway of rhodopsin T17M mutant
Objective: To study the degradation pathway and significance of rhodopsin T17M mutant.
Methods: MTT method was used to detect the T17M mutant of rhodopsin and the degradation rate of wild type.Western blot to detect the effect of lysosome inhibitor CQ and proteasome inhibitor MG132 on the degradation of rhodopsin T17M mutants and wild type. Immunoprecipitating detection of.Western blot detection p97/VCP-QQ (?) Erasin siRNA against rhodopsin The half-life of T17M mutant and wild type of purplish red.
Results: after the protein synthesis inhibitor CHX treated the HEK293 cells and ARPE-19 cells 6h, the CHX treated rhodopsin was labeled as 1, the relative values of the rhodopsin T17M mutants and the wild type proteins were 0.219 + 0.032 and 0.635 + 0.072 (P0.01) respectively, and the relative values of the rhodopsin T17M mutants of ARPE-19 cells and the relative values of the wild type proteins in ARPE-19 cells were divided. Don't be 0.302 + 0.041 and 0.531 + 0.052 (P0.01). After the lysosome inhibitor CQ treated HEK293 cell 12h, the T17M mutant of the rhodopsin increased from 1 to 1.023 + 0.265, and the relative value of the rhodopsin wild type protein increased from 1 to 1.433 + 0.159 (P0.05). After the proteasome inhibitor MG132 was L rational HEK293 cell 6h, the T17M mutant of the rhodopsin increased from 1 to 7.21. 3 + 2.108 (P0.01), the relative value of rhodopsin wild type protein increased from 1 to 2.011 + 0.221 (P0.05). After immunoprecipitation, the ubiquitination rhodopsin T17M mutant was increased from 1 to 2.200 + 0.361 (P0.01), and the relative value of wild type protein increased from 1 to 1.160 + 0.162. in ARPE-19 cells, and the control group and p97/VCP-QQ group of rhodopsin The relative values of the qualitative T17M mutant proteins were 0.159 + 0.052 and 0.558 + 0.095 (P0.01).Erasin siRNA respectively. The relative values of the Erasin siRNA group of the control group of the rhodopsin T17M mutant were 0.230 + 0.059 and 0.602 + 0.064 (P0.01), respectively, while the degradation rate of the rhodopsin wild type was not significantly changed.
Conclusion: compared with the wild type of rhodopsin, the degradation of T17M mutant is accelerated. The T17M mutant of rhodopsin can be degraded only through the proteasome system, while the wild type can be degraded by autophagosome system and proteasome system. The degradation of the T17M mutant of the rhodopsin is related to the ERAD of the ubiquitination. P97/VCP-QQ and Erasin siRNA are overexpressed by over expression of the mutant of the rhodopsin. Disturbance can inhibit the degradation of rhodopsin T17M mutant via ERAD pathway.
The third chapter is about the mechanism of cell death induced by T17M mutation of rhodopsin.
Objective: To study the mechanism of cell death induced by T17M mutation of rhodopsin.
Methods: the pEGFP-CL1-ARPE-19 cell line was established and the activity of proteasome was detected by Western blot. Overexpression of rhodopsin, induced endoplasmic reticulum stress reaction, and Western blot method was used to detect the expression difference of endoplasmic reticulum stress related protein BIP, GRP94, CHOP, peIF-2a, eIF-2a, active ATF-6a. The expression of stress related protein in the endoplasmic reticulum was affected by.Tunicamycin treatment of ARPE-19 cells, the number of cell deaths was detected by flow cytometry. The T17M mutant of rhodopsin was overexpressed. The level of intracellular ROS was detected by flow cytometry, and the ROS scavenger NAC and BHA were used to observe the change of cell death.
Results: pEGFP-CL1-ARPE-19 cell lines can express uGFP, T17M mutation of rhodopsin, and there is no significant change in the expression of uGFP in the wild type,.T17M mutation can make the cell endoplasmic reticulum stress protein BIP, GRP94, CHOP, peIF-2a, eIF-2a, active ATF-6a, compared with the wild type of rhodopsin The amount increased by 2.439 + 0.363 times (P0.01), 2.433 + 0.802 times (P0.01), 1.600 + 0.212 times (P0.05), 1.567 + 0.153 (P0.05), 2.167 + 0.306 times (P0.01). Compared with the wild type of rhodopsin, the expression of CHOP increased by 2.600 + 0.854 times and 1.467 + 1.600 times (P0.05) before and after PBA treatment, and the GRP94 expression was increased before and after the treatment. It was 1.203 + 0.239 times (P0.05), peIF-2a/eIF-2a was 1.733 + 0.154 times and 1.167 + 0.252 times (P0.05), active ATF-6a was 2.564 + 0.406 times and 1.349 + 0.529 times (P0.05). And the ARPE-19 cell death rate was 4.156% + 0.501% and 4.8 by using endoplasmic reticulum stress inducer before and after Tunicamycin. 14% + 0.531%, 3.879% + 0.413% and 5.712% + 0.574%, 7.021% + 0.612% and 16.213% + 3.419%, the overexpressed cell mortality of the rhodopsin T17M mutant was significantly higher than that of the empty vector and the wild type (P0.05). Compared with the no-load group, the relative ratio of the rhodopsin wild type and the rhodopsin T17M mutant ROS was respectively (P0.01) + 0.088 (P0.01). After the use of ROS scavenger NAC and BHA, the mortality of the unloaded body group, the DMSO group, the NAC group and the BHA group were 3.716% + 0.523%, 7.322% + 1.924%, 4.857% + 1.369% (compared to the DMSO group, P0.05) and 4.271% + 0.988% (compared to the DMSO group, P0.01).
Conclusion: T17M mutation of rhodopsin does not affect the.T17M mutation of proteasome activity can induce endoplasmic reticulum stress and up-regulated expression of BIP, GRP94, CHOP, peIF-2a, eIF-2a, active ATF-6a expression of endoplasmic reticulum stress protein. Chemical chaperone PBA can alleviate the T17M induced endoplasmic reticulum stress. Rhodopsin T17M mutation increases the induction of endoplasmic reticulum stress induced by the rhodopsin T17M mutation The sensitivity of the agent Tunicamycin. Mutant T17M rhodopsin increased the level of ROS in cells. ROS scavenger NAC and BHA could inhibit cell death caused by T17M mutation of rhodopsin.
【学位授予单位】:中南大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:R774.13
【相似文献】
相关期刊论文 前10条
1 邢明照;朱妙章;刘海春;王晓武;李宏伟;卢成哲;;甲醇对蟾蜍视紫红质的分解作用[J];中国应用生理学杂志;1989年04期
2 Jose Garrofe;徐经采;;在暗环境中缺锌鼠眼中已漂白的视紫红质的再生[J];微量元素;1988年02期
3 李玉栋,孙骞,张春平,富光华,鲁锐,张光寅;细菌视紫红质膜非线性吸收特性及其光子学应用[J];光学学报;1999年05期
4 崔之础,杨玲,张冬雷,管怀进,白沂涛;视网膜色素变性视紫红质部分基因序列检测[J];陕西医学检验;2000年04期
5 容维宁;盛迅伦;庄文娟;;常染色体显性遗传视网膜色素变性家系视紫红质基因突变分析[J];国际眼科杂志;2006年05期
6 费一坚;罗成仁;黄永志;;常染色体显性遗传视网膜色素变性视紫红质基因突变的检测[J];中华医学遗传学杂志;1992年06期
7 马晓晔,魏锐利,蔡季平,朱莉;常染色体显性视网膜色素变性家系基因定位的研究与视紫红质基因突变的检测分析[J];中国实用眼科杂志;2002年07期
8 万新民;;形形色色的电视病[J];职业与健康;1990年02期
9 马晓晔,魏锐利,蔡季平,朱莉;常染色体显性视网膜色素变性家系视紫红质基因突变的检测分析[J];中华眼底病杂志;2002年04期
10 李华;;“鬼打墙”与“雀盲眼”[J];科技致富向导;2000年03期
相关会议论文 前5条
1 卢春林;韦珏;叶宣;赵淑珍;田波;;生物电子材料细菌视紫红质外源合成系统的建立[A];首届中国功能材料及其应用学术会议论文集[C];1992年
2 杨群;赵有源;龚勤敢;李富铭;刘坚;李庆国;;脉冲激光对细菌视紫红质的瞬态光电荷转移动力学研究[A];第七届全国生物膜学术讨论会论文摘要汇编[C];1999年
3 滕雪雷;陆明;赵有源;;细菌视紫红质的光致非线性吸收[A];中国遗传学会第十届全国激光生物学学术会议论文摘要集[C];2009年
4 王友亮;曹军卫;;遗传修饰对细菌视紫红质的优化[A];第二届中国青年学者微生物遗传学学术研讨会论文集[C];2006年
5 陈桂英;张春平;许旭旭;;全光光子延时器延迟时间与细菌视紫红质参量的依赖关系(英文)[A];2007年全国第十六届十三省(市)光学学术会议论文集[C];2007年
相关重要报纸文章 前10条
1 徐波;眼睛需要哪些营养素[N];医药养生保健报;2007年
2 晓凯;电脑保养与用机卫生[N];吉林日报;2000年
3 程柱生;常饮茶可保护视力[N];保健时报;2004年
4 李杰;肝病患者少看电视[N];大众卫生报;2005年
5 宋新;夜班族多补点维A[N];健康时报;2007年
6 金文泉 资深医学教授、科普作家,,澳大利亚昆士兰大学高级访问学者;“万能”博士与阳光维生素[N];中国食品报;2012年
7 湖南省肿瘤医院 唐文;服用哪些药物要禁酒[N];大众卫生报;2002年
8 陶海 李晓莹;眼睛喜欢“吃”什么[N];中国医药报;2006年
9 欣闻;呵护心灵之窗哪些营养物质不可缺?[N];中国食品报;2009年
10 江西省人民医院眼科 教授 罗兴中;吃鱼肝油能补眼睛和保护视力吗[N];家庭医生报;2003年
相关博士学位论文 前2条
1 江海波;视网膜色素变性T17M视紫红质突变诱导细胞死亡的机制研究[D];中南大学;2014年
2 王宁;海洋微生物中变形菌视紫红质(Proteorhodopsin)结构和功能的研究[D];南京农业大学;2011年
相关硕士学位论文 前8条
1 冯晓强;基于细菌视紫红质光致变色特性的原型器件研究[D];西北大学;2000年
2 肖烨;细菌视紫红质结构与功能的固体核磁共振研究[D];华东师范大学;2012年
3 杨文正;纳米生物材料细菌视紫红质的光吸收与光调制特性及其应用研究[D];中国科学院研究生院(西安光学精密机械研究所);2003年
4 刘伟民;细菌视紫红质高分辨图像存储的实验研究[D];西北大学;2001年
5 祁春媛;菌紫质分子组装膜制备及其非线性光学性能研究[D];华东师范大学;2006年
6 王震;荷电脂质对重组细菌视紫红质蛋白活性的影响[D];上海交通大学;2007年
7 马晓晔;常染色体显性视网膜色素变性基因定位的研究与视紫红质基因突变的检测[D];第二军医大学;2001年
8 詹伟;细菌视紫红质质子传输机制的固体核磁共振研究[D];华东师范大学;2011年
本文编号:2133565
本文链接:https://www.wllwen.com/yixuelunwen/yank/2133565.html