SLPI启动子调控靶向EGFR的人工microRNA用于喉癌的基因治疗研究
[Abstract]:Research background:
Laryngeal cancer is the most common malignant tumor of the upper respiratory tract, accounting for about 25% of the head and neck tumors. The traditional treatment of laryngeal cancer is radical surgery or radiotherapy, supplemented by or not supplemented by chemotherapy. However, the loss of laryngeal function or serious side effects caused by traditional treatment greatly affect the quality of life of patients. Although surgical procedures, radiotherapy and chemotherapy regimens have progressed steadily, the survival rate of patients has not improved significantly in the past 30 years.
In the past 20 years, molecular targeted therapy has made great breakthroughs in the treatment of tumors. For head and neck squamous cell carcinoma (HNSCC), the most representative molecular targeted drug is the specific inhibitor of epidermal growth factor receptor (EGF). R) Monoclonal antibodies and small molecule tyrosine kinase inhibitors. However, the small molecule inhibitors represented by gefitinib have no definite effect on HNSCC. While the monoclonal antibodies represented by cetuximab play an auxiliary role in traditional radiotherapy and chemotherapy, however, due to the limited response rate, high drug resistance rate and frequent occurrence. Skin toxicity, gastrointestinal symptoms and other side effects make the application space of these drugs still small.
With the advancement of molecular cloning technology, gene therapy strategy with virus as expression vector and down-regulation of EGFR expression by RNA interference technology has opened up a new direction for tumor treatment. Compared with shRNA, artificial microRNAs incorporate a natural microRNA framework based on retaining the hairpin structure of the first generation of shRNA. In addition to being more efficient, the greatest advantage is that they can be activated by most of the promoters in mammals. This advantage of artificial microRNAs enables the use of tumor tissue-specific promoters to regulate targets. RNA interference with EGFR becomes possible.
Based on the above research background, we intend to design an artificial microRNA targeting EGFR, and use recombinant adenovirus as vector to regulate the expression of the artificial microRNA through the specific SLPI promoter of laryngeal cancer. We also take Hep-2 as the research object to explore the effect of this gene therapy strategy on tumor growth.
Research purposes:
To construct recombinant adenovirus vector loaded with artificial microRNA targeting EGFR under the control of SLPI promoter, and to study its safety and inhibitory effect on laryngeal cancer cells in vitro and in vivo.
Research methods:
1. Adenovirus shuttle plasmids pDC312-SLPI-EGFRamiR-pA and Ad-SLPI-GFP-pA were constructed and co-transfected into HEK293 cells with cytoskeleton plasmids pBGHlox (delta) E1 and 3Cre respectively for adenovirus packaging. Virus titer was determined by TCID50.
2. Human laryngeal squamous cell carcinoma cell line Hep-2 and human normal umbilical vein endothelial cell line HuVEC were infected with recombinant adenovirus Ad-SLPI-EGFRamiR and control virus Ad-SLPI-GFP respectively. The effects of the recombinant adenovirus on the proliferation of laryngeal carcinoma cell line Hep-2 and normal cell HuVEC were examined by microscopy, MTT and flow cytometry.
3. To establish a tumor-bearing model of laryngeal carcinoma in nude mice, we injected recombinant adenovirus Ad-SLPI-EGFRamiR, Ad-SLPI-GFP into the tumor, or orally administered gefitinib daily.
Research findings:
1 packaging, identification, amplification, purification and titer determination of recombinant adenovirus Ad-SLPI-EGFRamiR, Ad-SLPI-GFP
Adenovirus shuttle plasmids pDC312-SLPI-EGFRamiR-pA and pDC312-SLPI-GFP-pA were co-transfected into HEK293 cells with cytoskeleton plasmids pBGHlox (delta) E1 and 3Cre, respectively. About 13 days after transfection, the cells were observed under inverted microscope. More than 80% of the cells showed grape-like cytopathic effect and were not easy to fall off. After the supernatant was treated with protease K, PCR showed that the EGFRamiR fragments with different repeat numbers, 142 bp, 284 bp, 426 bp, were amplified by Ad-SLPI-EGFRamiR, and 1482 BP fragments were amplified by Ad-SLPI-EGFRamiR. The recombinant adenovirus Ad-SLPI-EGFRamiR and the control virus Ad-SLPI-GFP were successfully constructed. For 1 x 1010pfu/ml, the titer of Ad-SLPI-GFP is 6.3 * 109pfu/ml..
Western blot showed that the expression of 170kdEGFR was significantly decreased in Hep-2 cells treated with Ad-SLPI-EGFRamiR virus for 72 hours. However, after 72 hours of infection with Ad-SLPI-GFP, a large number of Hep-2 cells showed strong green fluorescence signal under fluorescence microscope, while HuVEC cells still showed no green fluorescence. EGFR was effectively down-regulated internally and the expression of green fluorescent protein was specifically regulated in human laryngeal squamous cell carcinoma cell line Hep-2, but not in normal human umbilical vein endothelial cell HuVEC. 72 hours was the appropriate infection time.
Inhibitory effect of recombinant adenovirus Ad-SLPI-EGFRamiR 2 on laryngeal carcinoma cell Hep-2 in vitro
2.1 inhibitory effect of recombinant adenovirus on cell proliferation
MTT results showed that the recombinant adenovirus Ad-SLPI-EGFRamiR had a strong inhibitory effect on the proliferation of laryngeal carcinoma Hep-2 cells 72 hours after infection, and could effectively inhibit the proliferation of laryngeal carcinoma cells at MOI 50 pfu/cell (inhibition rate was 22.5%), but had no significant inhibitory effect on the proliferation of normal HuVEC cells (inhibition rate was - 4.2%).
2.2 the morphological changes of the recombinant adenovirus after 72 hours.
After 72 hours of treatment with recombinant adenovirus Ad-SLPI-EGFRamiR (MOI=50), the morphological changes of Hep-2 cells were marked: the cells became round, shrunk, part beaded and floated. The morphological differences of HuVEC cells in normal cells were not obvious before and after treatment with adenovirus Ad-SLPI-EGFRamiR (MOI=50). There was no significant difference in cell morphology.
2.3 quantitative analysis of apoptosis by flow cytometry
Flow cytometry showed that the apoptosis rates of Hep-2 cells (cells stained by Annexin V-R-PE and 7-AAD) were 32.8% and 31.8% respectively 72 hours after the recombinant adenovirus Ad-SLPI-EGFRamiR was treated with MOI=35 and MOI=50, while the corresponding apoptosis rates of Hep-2 cells treated with Ad-SLPI-GFP for 72 hours were 9.2% and 10.0% respectively. The difference between the two viruses was significant quantitatively. These results suggest that recombinant adenovirus Ad-SLPI-EGFRamiR can effectively induce apoptosis and inhibit the growth and proliferation of laryngeal cancer cells, while for normal umbilical vein endothelial cells HuVEC, the apoptosis rates of AD-SLPI-EGFRamiR and Ad-SLPI-GFP after 72 hours treatment are 11.1% and 8.2% respectively, and the apoptosis rates of HuVEC treated with the corresponding virus MOI=50 are 15. 5%, 4.8%, the difference is not significant.
Inhibitory effect of recombinant adenovirus Ad-SLPI-EGFRamiR 3 on growth of tumor tissue in laryngeal carcinoma model
3.1 inhibitory effect of recombinant adenovirus Ad-SLPI-EGFRamiR on tumor growth in vivo
On the 13th day after the first treatment, the tumor volume of the Ad-SLPI-EGFRamiR group was smaller than that of the Ad-SLPI-GFP group and the gefitinib group, but the difference was not statistically significant (P 0.05). Compared with the tumor volume of the first treatment day, the growth rate of the tumor volume of the Ad-SLPI-EGFRamiR group was smaller than that of the Ad-SLPI-GFP group and the gefitinib group, but there was no significant difference. Significant statistical significance (P 0.05). At the end of the observation (20 days after the first administration), the tumor weight of the Ad-SLPI-EGFRamiR group was less than that of the Ad-SLPI-GFP group and the gefitinib group, but there was no significant difference (P 0.05).
3.2 adverse effects of recombinant adenovirus Ad-SLPI-EGFRamiR in vivo
During the course of treatment, the nude mice in the Ad-SLPI-EGFRamiR group and the Ad-SLPI-GFP group were in good physical condition, mental state, activity and dietary condition without obvious abnormalities. The difference (P0.05) was significantly higher than that in gefitinib group (P0.05).
Research conclusions:
1. The recombinant adenovirus Ad-SLPI-EGFRamiR and AD-SLPI-GFP can effectively infect Hep-2 cells and express the corresponding genes, which has good tissue specificity for laryngeal carcinoma.
2. The recombinant adenovirus Ad-SLPI-EGFRamiR can inhibit the growth of laryngeal carcinoma cells in vitro, but has a low inhibitory effect on normal cells.
3, in nude mice bearing tumor, recombinant adenovirus Ad-SLPI-EGFRamiR has a tendency to inhibit the growth of tumor tissue.
4, in nude mice bearing tumor, the recombinant adenovirus has high safety compared with gefitinib.
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2013
【分类号】:R739.65;R450
【相似文献】
相关期刊论文 前10条
1 刘俊;黄陈;江_";钟福全;;microRNA在胰腺癌中的研究进展[J];现代生物医学进展;2009年23期
2 王雪;王红静;;微小RNA与卵巢癌的研究进展[J];医学综述;2010年08期
3 刘东;陈云昭;李锋;;microRNA与食管癌关系的研究进展[J];现代生物医学进展;2010年05期
4 黄文涛;郭向前;戴甲培;陈润生;;MicroRNA,lncRNA与神经退行性疾病[J];生物化学与生物物理进展;2010年08期
5 高玉;吴晋晖;柳林;;哺乳动物视网膜microRNA的表达及功能[J];眼科新进展;2010年08期
6 吴微;杨欢;;MicroRNA与自身免疫性疾病[J];免疫学杂志;2010年12期
7 涂轶;梅金红;;乳腺癌相关microRNA研究进展[J];实用临床医学;2010年11期
8 胡庆伟;杜英;梅丽娜;邢建民;邓再兴;;微小RNA-200家族在子宫内膜癌中的表达及意义[J];中国预防医学杂志;2011年03期
9 蒋海锋;薄隽杰;;MicroRNA与膀胱癌的研究进展[J];中国癌症杂志;2011年04期
10 王宁;吕延杰;杨宝峰;;MicroRNA在心律失常研究中的进展及其应用前景[J];分子诊断与治疗杂志;2011年04期
相关会议论文 前10条
1 陈嘉;张守德;凌奕;杨蓓蓓;;靶向EGFR的人工microRNA的病毒载体构建及其在喉癌细胞中的应用[A];浙江省医学会耳鼻咽喉科学分会成立60周年庆典暨2011年浙江省医学会耳鼻咽喉头颈外科学学术年会论文汇编[C];2011年
2 李炯;段德民;郑克孝;;新型非标记高通量microRNA芯片技术[A];第一届全国生物物理化学会议暨生物物理化学发展战略研讨会论文摘要集[C];2010年
3 王俊峰;李巍;吴小江;阮康成;;大鼠附睾microRNA表达谱的研究[A];第十一次中国生物物理学术大会暨第九届全国会员代表大会摘要集[C];2009年
4 蒋义国;刘斌斌;;毒理学中的microRNA研究[A];广东省环境诱变剂学会、广东省预防医学会卫生毒理专业委员会2010年学术会议资料汇编[C];2010年
5 巩丽颖;孙开来;;两种microRNA在先心病心肌组织中的表达[A];中国的遗传学研究——遗传学进步推动中国西部经济与社会发展——2011年中国遗传学会大会论文摘要汇编[C];2011年
6 李梦龙;;Systematically analyze and select key features to microRNA precursors identification based on random forests[A];第十一届全国计算(机)化学学术会议论文摘要集[C];2011年
7 徐晨;鲍坚强;李定;郭强苏;;microRNA-449在小鼠精子发生过程中的作用研究[A];中国解剖学会2011年年会论文文摘汇编[C];2011年
8 江建霞;蒋晶晶;曹家树;;白菜花粉发育及授粉受精过程相关microRNA筛选及验证[A];中国园艺学会2011年学术年会论文摘要集[C];2011年
9 刘娜;杨景华;张明方;;嫁接西瓜microRNA的鉴定以及表达差异研究[A];中国园艺学会2011年学术年会论文摘要集[C];2011年
10 李鸿;屈晶晶;王睿;盛春君;程晓芸;王吉影;苏斌;柴尚玉;曲伸;;体外培养胰岛的microRNA表达谱及功能研究[A];中华医学会第十次全国内分泌学学术会议论文汇编[C];2011年
相关重要报纸文章 前10条
1 陈英云 乔蕤琳;哈医大成功研发国内首例microRNA转基因及敲减小鼠模型[N];黑龙江经济报;2010年
2 记者 朱敏丽;医药城创新牛奶检测技术[N];泰州日报;2010年
3 雷诺岛;EGFR抑制剂不良反应拓宽研发新领域[N];医药经济报;2011年
4 记者 许晓惠;乳品中微小核糖核酸科研成果公布[N];中国食品质量报;2010年
5 白毅;上海药物所合成EGFR酪氨酸激酶抑制剂[N];中国医药报;2009年
6 崔莱;治疗EGFR突变NSCLC—— 盐酸厄洛替尼具有明显生存优势[N];中国医药报;2011年
7 本报记者 王亦卫;杀敌,,而不伤及无辜[N];大众科技报;2011年
8 衣晓峰;哈医大发现心肌肥厚发生发展新机制[N];中国医药报;2010年
9 本报记者 何屹;你到底打了几份工?[N];科技日报;2010年
10 特约记者 肖鑫 记者 唐先武;我科学家提出肝癌预防判断与治疗新的潜在靶标[N];科技日报;2011年
相关博士学位论文 前10条
1 王雷;胰管内乳头状粘液性肿瘤:临床特征与microRNA的差异表达[D];第二军医大学;2010年
2 崔熠;microRNA在砷致胚胎发育毒性中的作用机制研究[D];北京协和医学院;2011年
3 王镇;食管黏膜鳞状上皮癌变相关microRNA的研究[D];北京协和医学院;2011年
4 侯晋;microRNA在病毒感染和肝细胞癌中的作用及相关机制研究[D];清华大学;2010年
5 骆黎静;人卵巢癌干细胞的分离、鉴定及其特异性microRNA的筛选[D];北京协和医学院;2011年
6 于曼丽;Let-7d对血管平滑肌细胞增殖调控的研究[D];第二军医大学;2011年
7 陈勇;microRNA-200c在胃癌SGC7901/CDDP细胞中的作用及其机制的研究[D];河北医科大学;2011年
8 于琦;雄激素受体在乳腺癌中表达意义和相关microRNA筛选的研究[D];天津医科大学;2010年
9 翁春华;血管生成素特异microRNAs的鉴定与功能分析[D];浙江大学;2010年
10 袁圆;全脑缺血再灌注后大鼠海马microRNA的变化及Let-7e调控Caspase-3表达和机制研究[D];浙江大学;2010年
相关硕士学位论文 前10条
1 宋永站;microRNA-200c对ZEB1表达影响及对肿瘤细胞侵袭迁移作用[D];江苏大学;2010年
2 胡德亮;microRNA-19b在P19细胞向心肌细胞分化中的作用[D];南京医科大学;2011年
3 曲婷;基于生物信息学方法的H1N1流感病毒致病及传播特性研究[D];吉林大学;2010年
4 吕赛群;基于microRNA调控靶向肿瘤细胞的溶瘤腺病毒的研究[D];浙江理工大学;2010年
5 张秀梅;韧带成纤维细胞成骨分化过程microRNA、mRNA和蛋白表达谱分析[D];济南大学;2011年
6 李芸;细支气管肺泡癌的临床特征及与肺癌转移相关microRNA的初步研究[D];中国人民解放军军医进修学院;2010年
7 孙佃臣;低磷胁迫响应microRNA及靶基因的克隆和大豆遗传转化研究[D];中国农业科学院;2011年
8 吉娜;自发性高血压大鼠肥厚心肌和纤维化肾脏组织中microRNA-21的表达[D];中国医科大学;2010年
9 陈娟;靶向Livin的microRNA干扰对人卵巢癌细胞SKOV3体外作用的研究[D];河北医科大学;2010年
10 梅林;卡氏肺孢子菌MSG-UCS基因microRNA表达载体的构建和鉴定[D];重庆医科大学;2010年
本文编号:2250550
本文链接:https://www.wllwen.com/yixuelunwen/yank/2250550.html