Rho激酶抑制剂Fasudil对Kv7钾通道选择性调节作用的研究
本文选题:法舒地尔 + Kv7钾离子通道 ; 参考:《河北医科大学》2014年硕士论文
【摘要】:电压门控型Kv7(Kv7.1-7.5)钾通道家族由KCNQ基因编码,在调节心肌动作电位及稳定神经元膜电位方面发挥重要作用。Kv7.1通道主要表达于心肌组织,并与其辅助亚单位KCNE1通道共同编码组成延迟整流钾通道(IKs),在调节心肌细胞动作电位时程中发挥着重要作用,KCNQ1/KCNE1突变体构成遗传性心律失常的基础并导致长QT综合症。Kv7.2和Kv7.3通道以四聚体形式共表达产生的电流已经被证实是M电流分子基础。另有研究发现Kv7.5通道也参与M电流的形成。Kv7.2和Kv7.3通道基因突变或M通道功能失调,可引发许多中枢性疾病,如良性家族性新生儿惊厥症(BFNC)。Kv7.4通道主要表达于内耳的耳蜗和前庭器官以及中枢听觉传导通路。Kv7.4通道突变被证实引发遗传性耳聋症(DFNA2)。近期研究发现Kv7.1、Kv7.4、Kv7.5通道高表达于血管平滑肌等多种平滑肌细胞。药理学研究显示Kv7.1对血管张力无影响,Kv7.4、Kv7.5参与血管张力的调节,Kv7.4、Kv7.5调节剂对高血压存在潜在的治疗价值。但是目前高选择性的Kv7.4、Kv7.5调节剂尚未见报道。本研究发现Rho激酶抑制剂法舒地尔(Fasudil)可选择性激活Kv7.4/Kv7.5通道,而对其它Kv7通道无作用。 Fasudil,又名HA1077,是一种新型异喹啉磺酰胺衍生物类Rho激酶(Rho-kinase)选择性抑制药,能强效扩血管,可以有效缓解脑血管痉挛,临床上主要用于改善和预防蛛网膜下腔出血后引起的脑血管病,脑血管痉挛及肺动脉高压的治疗。研究认为Fasudil的血管舒张作用与抑制Rho激酶有关,而我们认为Fasudil的扩血管作用还与增大Kv7钾电流有关。此外,我们发现Fasudil对Kv7钾离子通道家族的调节作用具有选择性。 本论文以Kv7钾离子通道家族为出发点,利用电生理穿孔膜片钳技术及四通道微血管张力测定系统,研究Fasudil对表达于HEK293细胞的Kv7钾离子通道、分离培养的乳大鼠的小直径背根神经节(DRG)神经元细胞M通道的作用以及Fasudil对肠系膜阻力血管的作用。 1. Fasudil对表达于HEK293细胞的Kv7钾离子通道的作用 目的:研究Fasudil对Kv7.1/KCNE1、Kv7.2、Kv7.2/Kv7.3、Kv7.4及Kv7.5的选择性调节作用。 方法:利用电生理穿孔膜片钳技术,观察Fasudil对表达于HEK293细胞的Kv7钾离子通道的作用。瑞替加滨(Retigabine,RTG,Kv7钾离子通道开放剂)为阳性对照药。 结果:(1)30μM Fasudil对Kv7.1/KCNE1电流无明显作用。 (2)1μM、3μM、10μM、30μM及100μM Fasudil对Kv7.2及Kv7.2/7.3电流均无明显作用。 (3) Fasudil可浓度依赖性地增强Kv7.4电流,10μM、30μM、100μMFasudil及10μM RTG分别使尾电流增加0.82、1.38、2.03及3.16倍。 (4) Fasudil可浓度依赖性地增强Kv7.5电流。Fasudil使电导-电压(G-V)激活曲线左移,且左移的幅度随浓度升高而增大。30μM Fasudil使G-V曲线由-53.7mV左移至-62.4mV,左移幅度为9.39±1.10mV;10μM RTG使曲线左移至-68.9mV,左移幅度为13.925±1.80mV。 结论:Fasudil对Kv7.4及Kv7.5电流有增大作用,而对Kv7.1/KCNE1、Kv7.2及Kv7.2/7.3电流无明显作用,说明Fasudil对Kv7钾电流的调节作用具有选择性。 2. Fasudil对大鼠的小直径背根神经节(DRG)神经元细胞上M电流的作用 目的:研究Fasudil对分离培养的大鼠的DRG神经元M电流的影响。 方法:利用电生理穿孔膜片钳技术,观察Fasudil对分离培养的大鼠DRG神经元细胞M型钾电流的作用。 结果:(1)1μM、3μM、10μM、30μM及100μM Fasudil对大鼠DRG神经元上表达的M型钾电流无明显作用。 (2)1μM、3μM、10μM、30μM及100μM Fasudil对大鼠DRG神经元的静息膜电位无明显作用。 结论:Fasudil对大鼠DRG神经元细胞上M电流和静息膜电位均无明显作用,提示Fasudil对Kv7.2/Kv7.3无明显作用。 3. Fasudil对离体大鼠肠系膜二级阻力血管的作用 目的:研究Fasudil对离体大鼠肠系膜二级阻力血管的作用及机制。 方法:利用微血管张力测定技术,观察Fasudil对离体大鼠肠系膜二级阻力血管的作用。每次实验分为两小组。Fasudil组:10μM Phe预收缩血管,待平稳之后,依次加入不同浓度的Fasudil,记录实验结果;Fasudil+XE991组:10μM Phe预收缩平稳之后,加入10μM XE991(Kv7钾离子通道阻断剂)孵育15min,再依次加入不同浓度的Fasudil,记录实验结果。 结果:Fasudil可浓度依赖性地舒张Phe预收缩的肠系膜二级阻力血管,EC50为0.83±0.25μM,,最大舒张率(Emax)为96.12%;Fasudil可浓度依赖性地舒张Phe+XE991预收缩的肠系膜二级阻力血管,量效曲线右移,EC50为5.04±0.96μM,Emax为96.46%。 结论:Fasudil舒张Phe+XE991预收缩的血管的量效曲线发生了右移,其机制可能是Fasudil增大了血管平滑肌细胞上Kv7.4及Kv7.5钾电流,使血管舒张。提示Fasudil对Kv7.4及Kv7.5的选择性调节作用是其舒张血管作用的机制之一。 以上研究结果表明,Fasudil对Kv7钾通道具有选择性调节作用,为选择性的Kv7钾离子通道调节剂的开发提供了新的思路;另外,Fasudil对Kv7.4和Kv7.5钾电流的增大作用可能是其血管调节的作用机制之一,对其临床应用提供了新的理论依据。
[Abstract]:The voltage gated Kv7 (Kv7.1-7.5) potassium channel family is encoded by the KCNQ gene and plays an important role in regulating the cardiac action potential and stabilizing the neuron membrane potential. The.Kv7.1 channel is mainly expressed in the myocardial tissue, and the delayed rectifier potassium channel (IKs) is composed of its auxiliary subunit KCNE1 channel, and the action potential is adjusted to regulate the action potential of the cardiac myocytes. The process plays an important role. KCNQ1/KCNE1 mutants form the basis of hereditary arrhythmia and lead to the current produced by the co expression of the long QT syndrome.Kv7.2 and Kv7.3 channels in the form of four polymer, which has been confirmed as the molecular basis of the M current. Further studies have found that Kv7.5 channels are also involved in the formation of.Kv7.2 and Kv7.3 channel gene mutations or M of the M current. Dysfunction of the channel can cause many central diseases, such as the benign familial neonatal convulsion (BFNC).Kv7.4 channel is mainly expressed in the inner ear cochlea and vestibule organs, and the.Kv7.4 channel mutation in the central auditory pathway is confirmed to cause hereditary deafness (DFNA2). Recent studies have found that Kv7.1, Kv7.4, Kv7.5 channels are highly expressed in blood vessels. A variety of smooth muscle cells such as smooth muscle cells. Pharmacological studies have shown that Kv7.1 has no effect on vascular tension, Kv7.4, Kv7.5 participates in the regulation of vascular tension, Kv7.4, Kv7.5 regulator has potential therapeutic value for hypertension. However, the high selective Kv7.4, Kv7.5 regulator has not yet been reported. This study found that the Rho kinase inhibitor FDD (Fasudi) L) selectively activates the Kv7.4/Kv7.5 channel, but has no effect on other Kv7 channels.
Fasudil, also known as HA1077, is a new type of ISO quinoline sulfonamide derivative, Rho kinase (Rho-kinase) selective inhibitor, which can effectively expand blood vessels and effectively relieve cerebral vasospasm. It is mainly used to improve and prevent cerebrovascular disease, cerebral vasospasm and pulmonary hypertension after subarachnoid hemorrhage. The study thinks Fas The vasodilatation of udil is associated with the inhibition of Rho kinase, and we believe that the vasodilatation of Fasudil is also related to the increase of the Kv7 potassium current. Furthermore, we found that Fasudil has a selective role in the regulation of the Kv7 potassium channel family.
In this paper, using the Kv7 potassium channel family as the starting point, using the electrophysiological perforation patch clamp technique and the four channel microvascular tension measurement system, the effect of Fasudil on the Kv7 potassium channel expressed in HEK293 cells, the role of the M channel of the small diameter dorsal root ganglion (DRG) of the rat's small diameter dorsal root ganglion (DRG) and the mesenteric resistance to the mesenteric obstruction were studied. The role of force and blood vessel.
Effect of 1. Fasudil on Kv7 potassium channels expressed in HEK293 cells
Objective: To study the selective regulation of Fasudil on Kv7.1/KCNE1, Kv7.2, Kv7.2/Kv7.3, Kv7.4 and Kv7.5.
Methods: the effect of Fasudil on the Kv7 potassium channel expressed in HEK293 cells was observed by electrophysiological perforation patch clamp technique. Retegine (Retigabine, RTG, Kv7 potassium channel opener) was a positive control drug.
Results: (1) 30 M Fasudil had no significant effect on Kv7.1/KCNE1 current.
(2) 1 M, 3 M, 10 M, 30 M and 100 M Fasudil had no obvious effect on Kv7.2 and Kv7.2/7.3 currents.
(3) Fasudil can enhance Kv7.4 currents in a concentration dependent manner. The 10 M, 30 M, 100 MFasudil and 10 M RTG respectively increase the tail current by 0.82,1.38,2.03 and 3.16 times.
(4) Fasudil can enhance the Kv7.5 current.Fasudil to make the conductance voltage (G-V) activation curve move left, and the amplitude of the left shift increases with the concentration of.30 mu M Fasudil to move the G-V curve from -53.7mV left to -62.4mV, and the left shift is 9.39 + 1.10mV, and the 10 mu M makes the left shift to 13.925 +.
Conclusion: Fasudil has an increasing effect on the current of Kv7.4 and Kv7.5, but has no obvious effect on the current of Kv7.1/KCNE1, Kv7.2 and Kv7.2/7.3, indicating that Fasudil has a selective effect on the regulation of the potassium current of Kv7.
Effect of 2. Fasudil on M currents in rat small diameter dorsal root ganglion (DRG) neurons
Objective: To study the effect of Fasudil on the M currents of DRG neurons isolated from rats.
Methods: electrophysiological perforation patch clamp technique was used to observe the effect of Fasudil on M type potassium currents in cultured rat DRG neurons.
Results: (1) 1 mu M, 3 M, 10 M, 30 M and 100 M Fasudil had no significant effect on M potassium currents in rat DRG neurons.
(2) 1 mu M, 3 M, 10 M, 30 M and 100 M Fasudil had no significant effect on resting membrane potential of DRG neurons in rats.
Conclusion: Fasudil has no significant effect on M current and resting membrane potential of DRG neurons in rats, suggesting that Fasudil has no significant effect on Kv7.2/Kv7.3.
Effect of 3. Fasudil on isolated rat mesenteric two grade resistance vessels
Objective: To study the effect and mechanism of Fasudil on isolated rat mesenteric two grade resistance vessels.
Methods: the effect of Fasudil on the two level resistance vessels of rat mesentery in vitro was observed by microvascular tension measurement. Each experiment was divided into two groups of.Fasudil groups: 10 u M Phe preconstricted blood vessels. After the stabilization, the experimental results were added to different concentrations of Fasudil in order, and the Fasudil+XE991 group: after the pre contraction of 10 mu M Phe was stationary, add The 15min was incubated with 10 M XE991 (Kv7 potassium channel blocker), and then the Fasudil was added in order to record the experimental results.
Results: Fasudil had a concentration dependent relaxation of Phe precontracted mesenteric two resistance vessels, EC50 was 0.83 + 0.25 mu M, and the maximum diastolic rate (Emax) was 96.12%; Fasudil could be concentrated on Phe+XE991 precontracted mesenteric two resistance vessels, the volume effect curve was shifted rightward, EC50 was 5.04 + 0.96 micron, Emax was 96.46%.
Conclusion: the volume effect curve of Fasudil diastolic Phe+XE991 precontracted blood vessels has a right shift. The mechanism may be that Fasudil increases the Kv7.4 and Kv7.5 potassium currents on vascular smooth muscle cells and makes the vasodilatation. The selective regulation of Fasudil on Kv7.4 and Kv7.5 is one of the mechanisms of vasodilatation.
The above results show that Fasudil can selectively regulate the potassium channel of Kv7 and provide a new idea for the development of selective Kv7 potassium channel regulator. In addition, the effect of Fasudil on the potassium current of Kv7.4 and Kv7.5 may be one of the mechanisms of its vascular regulation, and provides a new theoretical basis for its clinical application.
【学位授予单位】:河北医科大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:R96
【相似文献】
相关期刊论文 前10条
1 贾勇圣;孙洪良;赵杰;李昕;郑建全;;HERG钾通道抑制——祸兮?福兮?[J];医学与哲学(临床决策论坛版);2007年09期
2 颜铮;钾通道启开剂药理的最新进展[J];药学进展;1994年03期
3 张永昶;肺动脉平滑肌细胞膜钾通道的细胞内调控[J];国外医学.呼吸系统分册;2000年04期
4 张炜,王晓良;钾通道家族新成员:双孔道钾通道的研究进展[J];生理科学进展;2003年01期
5 彭盛德,胡霞敏,曾繁典;ATP敏感钾通道——一种心肌缺血的防御机制[J];湖北民族学院学报(医学版);2003年01期
6 伍吉云;钾通道特性的研究进展[J];井冈山医专学报;2003年04期
7 黄元伟;钾通道与心血管临床[J];岭南心血管病杂志;2003年02期
8 刘彩连,张惠斌,黄文龙;钾通道调节剂的研究进展[J];药学进展;2003年04期
9 黄元伟;钾通道与心血管临床[J];心脏杂志;2004年02期
10 徐春华;刘远厚;;钙激活钾通道α单位的研究现况[J];医学综述;2006年23期
相关会议论文 前10条
1 杨瑞玲;刘宏;;钾通道对平滑肌收缩调控影响的研究进展[A];2013年全国医药学术交流会暨临床药学与药学服务研究进展培训班论文集[C];2013年
2 张世忠;曹阳;;线粒体钙激活及ATP敏感钾通道在肢体远距预处理心肌保护中作用研究[A];中国生理学会第23届全国会员代表大会暨生理学学术大会论文摘要文集[C];2010年
3 曹嵩;喻田;;线粒体ATP敏感性钾通道与心肌缺血-再灌注损伤研究进展[A];全国第四次麻醉药理学学术会议暨2013年贵州省麻醉学术年会论文汇编[C];2013年
4 钱霞;孔辉;周芳;牛玲;丁建花;孙秀兰;范益;胡刚;;ATP敏感性钾通道:抗抑郁治疗的新靶点[A];中国药理学会第十次全国学术会议专刊[C];2009年
5 韩圣娜;张莉蓉;胡香杰;范天黎;;氟康唑对HERG钾通道电生理功能的影响[A];全国第十一届生化与分子药理学学术会议论文集[C];2009年
6 何华美;汪海;肖文彬;;依普卡林对血管平滑肌ATP敏感性钾通道的调节[A];海峡两岸三地药理学学术报告会论文汇编[C];2001年
7 杨国勋;李志;刘唐威;钱静;农丹鹏;;四乙胺阻断大电导钙激活钾通道对血管平滑肌细胞增殖的影响及其机制研究[A];中华医学会第十五次全国心血管病学大会论文汇编[C];2013年
8 魏晓莉;孙洪良;华南;张诚;闫海涛;郑建全;;ZC88阻断HERG钾通道抑制肿瘤细胞增殖[A];2011医学科学前沿论坛第十二届全国肿瘤药理与化疗学术会议论文集[C];2011年
9 尹莹;田申;杨波;夏强;;睾酮替代疗法通过促进线粒体ATP敏感性钾通道开放发挥心肌保护作用[A];浙江省生理科学会2006年学术年会论文汇编[C];2006年
10 李宝馨;杨宝峰;;基于HERG钾通道,靶向性研究心律失常发生及药物干预的机制[A];中国化学会第八届天然有机化学学术研讨会论文集[C];2010年
相关重要报纸文章 前7条
1 付东红;学者揭示钾通道结构与功能[N];健康报;2007年
2 吕工;ATP敏感钾通道及其相关药物研究[N];中国医药报;2002年
3 周勇;北大医学部揭示钾通道结构基础和分子机制[N];中国医药报;2007年
4 衣晓峰 陈英云;哈医大钾通道药理学研究获系列进展[N];中国医药报;2007年
5 ;钾离子通道药物作用的新靶点[N];中国医药报;2003年
6 成银霞;外周镇痛药作用新机制:激活精氨酸/NO/cGMP/蛋白激酶G/ATP敏感性钾通道 Analgesics:Stimrlators of the NO-cGMP-PKG-K+ ATP Channel[N];中国医药报;2006年
7 吕工 编译 林;心有灵药一点通[N];医药经济报;2002年
相关博士学位论文 前10条
1 卓仁恭;双孔钾通道TREK-2门控机制研究[D];南方医科大学;2015年
2 康劲松;淋巴细胞钾通道在应激引起的神经免疫调节变化中的作用[D];吉林大学;2005年
3 孙洪良;4-氨基哌啶类化合物ZC88抗肿瘤活性及机制的研究[D];中国人民解放军军事医学科学院;2011年
4 王国勇;高血压时阻力血管平滑肌钙激活钾通道的特性及调节[D];中国协和医科大学;1994年
5 张鹏俊;钾通道介导Aβ的神经毒及HN的拮抗作用:电生理和凋亡的实验观察[D];山西医科大学;2009年
6 赵宁;Kv1.3钾通道阻断药物对人T淋巴细胞活化的调节及意义[D];华中科技大学;2014年
7 佟倩;ACEI诱导的延迟心肌保护作用及与ATP敏感钾通道的关系[D];吉林大学;2004年
8 袁辉;延迟整流钾通道Kv2.1在氧糖剥夺介导细胞损伤中的作用及相关药理学研究[D];中国协和医科大学;2009年
9 李志松;κ阿片受体激动剂U50488对未分化PC12细胞钾通道的调节作用及其机理的初步探讨[D];中国协和医科大学;2006年
10 何彦林;新型抗抑郁药物调节小鼠皮层神经元钾通道的新机制[D];复旦大学;2012年
相关硕士学位论文 前10条
1 申丽;α1A和AT1受体通过特定PKC亚型调节hERG钾通道的分子基础[D];河北医科大学;2015年
2 刘晓静;原发性高血压中ATP敏感性钾通道表达和功能的随龄改变研究[D];中国人民解放军医学院;2016年
3 陈睿;血管钠肽对大鼠腹主动脉平滑肌细胞ATP敏感钾通道的作用[D];第四军医大学;2016年
4 马柳一;慢性心衰大鼠下丘脑室旁核瞬时外向钾通道蛋白对交感神经的影响及中药芪苈强心干预研究[D];河北医科大学;2016年
5 贾秀芹;钾通道调控药对点燃模型的作用及其机制[D];青岛大学;2007年
6 刘树楷;蛋白酪氨酸磷酸酶非受体型12与心脏HERG钾通道相互作用并调控通道功能的研究[D];汕头大学;2011年
7 丁捷;钙激活钾通道及ATP敏感性钾通道在缺氧性肺血管收缩中的作用[D];华中科技大学;2006年
8 刘冲;针对HERG钾通道的早期心脏毒性评价的高通量筛选细胞模型[D];郑州大学;2012年
9 张邱兵;新疆哈萨克族高血压病患者外周血T淋巴细胞钾通道药物干预的实验研究[D];新疆医科大学;2014年
10 石金山;缺氧/药物后处理对大鼠心肌细胞ATP敏感性钾通道亚基的影响[D];遵义医学院;2010年
本文编号:1865430
本文链接:https://www.wllwen.com/yixuelunwen/yiyaoxuelunwen/1865430.html