胰脂酶与非酶条件下的纳米乳口服吸收研究
发布时间:2018-06-10 11:58
本文选题:水难溶性药物 + 纳米乳给药系统 ; 参考:《广东药学院》2014年硕士论文
【摘要】:目的:以BCSⅡ类(Biopharmaceutics Classification System,BCS)难溶性药物为模型药物,设计纳米乳给药系统((self)namoemulsion drug delivery system,(S)NEDDS),采用体外细胞模型,脂解模型及体内药动学模型研究脂解与非脂解条件下的纳米乳口服吸收机理。 方法(:1)BCSII模型药物NEDDS处方设计及质量评价研究。通过测定4个BCSII类难溶性药物在辅料中的溶解度选择NEDDS处方成分,绘制伪三元相图选择最优处方组成成分及比例。采用激光粒度测定仪测定粒径及观察载药NEDDS24h内稳定性对载药处方进行评价。 (2)BCSII模型药物体外细胞膜渗透研究。构建MDCK细胞模型,比较4个BCSII类难溶性药物NEDDS与其饱和水溶液的累积渗透百分率(CP%)及表观渗透系数(Papp),考察NEDDS对难溶性药物细胞转运渗透性的影响。 (3)桂利嗪中链油自纳米乳(CIN-MCT-SNEDDS)处方设计及质量评价研究。通过考察各辅料的混合均一性,优选处方辅料,绘制伪三元相图并结合药物在辅料中的溶解度,确定优选处方。通过测定自乳化速率、透光率和粒径、以及考察不同载药量SNEDDS的稳定性对优选处方进行评价。 (4)体外脂解模型的建立与优化研究。通过参考文献,建立体外脂解模型,并以MCT-SNEDDS脂解的速度与程度为指标,对胰脂酶浓度、胆盐/磷脂胶束浓度、滴定用NaOH浓度、Trizma maleate浓度以及Ca2+加入方式等条件作进行优化考察。 (5)CIN-MCT-SNEDDS脂解过程中CIN在各相中的动态分布及溶解度变化研究。采用已优化的体外脂解模型进行CIN-MCT-SNEDDS脂解试验,于不同时间点取样,以台式离心和超速离心的方式分离脂解液各相,HPLC测定不同时间点各相中药物含量;对比CIN-MCT-SNEDDS脂解与非脂解条件下,水相中药物的溶解度变化。 (6)CIN-MCT-SNEDDS大鼠体内药物动力学研究。比较CIN-MCT-SNEDDS与其混悬液(CIN-SUSP)药物动力学。采用SD大鼠口服给药,于给药前、给药后不同时间点取血、分离血浆,乙腈沉淀蛋白,HPLC测定血药浓度。绘制各给药组的平均血药浓度-时间曲线,,线性梯形法计算药时曲线下面积(AUC),并比较各主要药动学参数。 结果:(1)BCSII模型药物NEDDS处方设计及体外评价。NEDDS最优处方比例组成为MCT oil: Tween80/Span80(HLB=11):水相=8:10:82(W/W)。在最优处方比例下,制备4个难溶性药物载药NEDDS均能形成略带蓝色乳光的半透明纳米乳液,粒径在80nm以下,放置24h后均无药物析出,稳定性较好。 (2)BCSII模型药物体外细胞膜渗透研究。NEDDS均可显著性的提高GRI、IND、KET、PHE的溶解度,但GRI、IND、KET、PHE的NEDDS在MDCK细胞模型的转运累积渗透百分率(CP%)和渗透系数(Papp)均明显低于难溶性药物的饱和水溶液(P 0.05)。 (3)CIN-SNEDDS处方设计及质量评价。CIN-MCT-SNEDDS的最优处方为(MCToil:辛酸=5:5): Cremophor RH40: Ethanol=3:5:2。体外评价结果显示MCT-SNEDDS在水、pH6.8消化缓冲液及胆盐/磷脂胶束溶液中均能于3min内形成均一、透明的纳米乳液,粒径29nm,载药量为25mg的CIN-MCT-SNEDDS分散于上述介质中放置24h均无药物析出,体系均一稳定。 (4)体外脂解模型的建立与优化。确定体外脂解模型各条件为NaCl:50Mm;Trizma maleate:50mM;Ca2+:5mM(一次加入);NaTDC/PC:5mM/1.25mM;胰脂酶:800TBU/mL;NaOH:1M。 (5)CIN在各溶液中的溶解度大小顺序为MCT-SNEDDS脂解液可分离出水相和沉淀相,水相中CIN含量随脂解的进行逐渐下降,沉淀相中药物沉淀增加量与水相药物含量下降趋势相一致;CIN-MCT-SNEDDS在脂解状态下药物逐渐析出,在非脂解状态下无药物析出,但CIN-MCT-SNEDDS脂解60min后水相中的药物浓度仍比其在水相中的饱和溶解度约高3倍。CIN溶解度大小为:pH1.2HCl脂解液水相NATDC/PC胶束溶液消化缓冲液≈水。还有在纳米乳中的溶解度 (6)CIN-MCT-SNEDDS大鼠体内药物动力学研究。CIN口服后体内吸收过程出现双峰现象,CIN-MCT-SNEDDS与CIN-SUSP主要的药动学参数C1max、C2max、T1max、T2max、 AUC0~24分别为0.44μg/mL、0.63μg/mL、2h、8h和6.27μg.h/mL与。。。。。。。。。。;与CIN-SUSP相比,CIN-SNEDDS主要药动学参数C1max、C2max和AUC0~24显著性增加,Fr为179.66%,T2max明显延长。 结论:NEDDS可提高4个模型药物的的溶解度,但在MDCK细胞模型的跨膜转运反而下降,因为与胃肠道的生理环境相差较大,此经典体外细胞模型用于评价纳米乳给药系统口服吸收的准确性具有一定的局限性;CIN-MCT-SNEDDS体外脂解过程中药物逐渐释放,并被增溶于水相的混合胶束中;体内药动学研究结果表明CIN-MCT-SNEDDS可显著提高药物生物利用度,延缓药物吸收;体外脂解后药物胶束相溶解度的增加与体内增加吸收具有一定的相关性。体外脂解模型用于评价和预测药物的口服吸收具有一定的可信度。
[Abstract]:Objective: to design nanoscale drug delivery system (self) namoemulsion drug delivery system, (S) NEDDS) with BCS class II (Biopharmaceutics Classification System, BCS) refractory drugs, and to study the oral absorption mechanism of nanoscale milk under lipo and non lipo conditions by using in vitro cell model, lipo model and pharmacokinetic model in vivo.
Method (:1) BCSII model drug NEDDS prescription design and quality evaluation study. By determining the composition of NEDDS prescription components of 4 BCSII refractory drugs in the excipients, draw the optimal prescription composition and proportion of the pseudo three element phase diagram, determine the particle size by laser particle size analyzer and observe the stability of drug loading in the drug carrying drug. The prescription is evaluated.
(2) the membrane permeability of BCSII model drugs in vitro was studied. The MDCK cell model was constructed to compare the cumulative penetration percentage (CP%) and apparent osmotic coefficient (Papp) of the 4 BCSII refractory drugs, NEDDS and saturated aqueous solution, and to investigate the effect of NEDDS on the transport permeability of insoluble drugs.
(3) the study on the prescription design and quality evaluation of the chain oil self nanoscale (CIN-MCT-SNEDDS). By investigating the mixing homogeneity of the ingredients, selecting the prescription accessories, drawing the pseudo three element phase diagram and combining the solubility of the drugs in the excipients, the optimum prescription is determined. By measuring the rate of self emulsification, the transmittance and the particle size, and the investigation of the different drug loading amount, SNE The stability of DDS evaluates the preferred prescription.
(4) establish and optimize the model of lipolysis in vitro. By reference, the model of lipolysis in vitro was established, and the concentration of lipase, the concentration of bile salt / phospholipid micelle, the concentration of NaOH, the concentration of Trizma maleate, and the addition of Ca2+ were optimized by the speed and degree of MCT-SNEDDS lipase.
(5) study on the dynamic distribution and solubility changes of CIN in each phase during CIN-MCT-SNEDDS lipolysis. Using the optimized model of in vitro lipid solution for CIN-MCT-SNEDDS lipolysis test, sampling at different time points, separating all phases of lipolysis by table centrifugation and overspeed centrifugation, HPLC determination of drug content in each phase at different time points, and comparing CI The solubility of drugs in aqueous phase under N-MCT-SNEDDS lipolysis and non lipolytic conditions.
(6) pharmacokinetics study in CIN-MCT-SNEDDS rats. Compare the pharmacokinetics of CIN-MCT-SNEDDS and its suspension (CIN-SUSP). Take the oral administration of SD rats by oral administration. Before given, the blood was taken at different time points, plasma, acetonitrile precipitin and HPLC were used to determine the concentration of blood drug. The average concentration time curve of the drug group was drawn, and the linearity of the blood concentration time curve was drawn. Trapezoidal method was used to calculate the area under the time curve (AUC) and the main pharmacokinetic parameters were compared.
Results: (1) the formulation of BCSII model drug NEDDS prescription design and in vitro evaluation of.NEDDS optimal prescription proportion consists of MCT oil: Tween80/Span80 (HLB=11): aqueous =8:10:82 (W/W). Under the optimal prescription proportion, the preparation of 4 refractory drug carrying drugs NEDDS can form a translucent nanoscale emulsion with blue milk light with a particle size below 80nm. No drug precipitation, good stability.
(2) the study of cell membrane permeability in BCSII model drugs in vitro.NEDDS can significantly increase the solubility of GRI, IND, KET, PHE, but the percentage of GRI, IND, KET, PHE NEDDS in the MDCK cell model is significantly lower than the saturated solution of soluble drugs (0.05).
(3) the optimal prescription of CIN-SNEDDS prescription design and quality evaluation.CIN-MCT-SNEDDS is (MCToil: octane =5:5): Cremophor RH40: Ethanol=3:5:2. in vitro evaluation results show that MCT-SNEDDS can form all one in 3min in water, pH6.8 digestion buffer and bile salt / phospholipid micelle solution, transparent nanoscale emulsion, 29nm particle size, and drug loading amount of 25mg CIN-MCT-SNEDDS was dispersed in the above medium without 24h, and the system was stable.
(4) establishment and optimization of the model of lipolysis in vitro. The conditions for determining in vitro lipid model were NaCl:50Mm; Trizma maleate:50mM; Ca2+: 5mM (a addition); NaTDC/PC:5mM/1.25mM; pancreatic lipase: 800TBU/mL; NaOH:1M.
(5) the solubility of CIN in each solution is the MCT-SNEDDS lipolytic solution which can separate the effluent and the precipitate phase. The content of CIN in the aqueous phase decreases gradually with the lipid solution. The increase of the drug precipitation in the precipitate phase is consistent with the trend of the decrease of the water phase drug content; the drug gradually precipitates in the lipoid state and is in the non lipolysis state. There is no drug precipitation, but the concentration of the drug in the water phase after CIN-MCT-SNEDDS Liping 60min is still 3 times higher than that in the aqueous phase. The solubility of the.CIN solubility in the aqueous NATDC/PC micelle solution of the pH1.2HCl lipolysis and the solubility in the nano milk.
(6) pharmacokinetic study in CIN-MCT-SNEDDS rats, the absorption process of.CIN after oral administration appeared in Shuangfeng. The major pharmacokinetic parameters of CIN-MCT-SNEDDS and CIN-SUSP were C1max, C2max, T1max, T2max, and AUC0~24 were 0.44 mu g/mL, 0.63 mu g/mL, 2h, 6.27 Mu and... Max, C2max and AUC0~24 increased significantly, Fr was 179.66%, T2max significantly prolonged.
Conclusion: NEDDS can improve the solubility of the 4 model drugs, but the transmembrane transport of the MDCK cell model decreases because it is quite different from the physiological environment of the gastrointestinal tract. This classic extracorporeal cell model is used to evaluate the accuracy of the oral absorption of the nano emulsion system; CIN-MCT-SNEDDS in the process of in vitro lipid solution. The drug was released gradually and was solubilized in the mixed micelles of water phase. In vivo pharmacokinetics study showed that CIN-MCT-SNEDDS could significantly improve the bioavailability of drugs and delay the absorption of drugs; the increase of micelle solubility in vitro was related to the increase of absorption in the body. In vitro lipolysis model was used for evaluation and prediction. The oral absorption of drugs has certain credibility.
【学位授予单位】:广东药学院
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:R943
【参考文献】
相关期刊论文 前4条
1 陈伟薇;李俊;宋珏;;药物肠吸收的研究方法进展[J];安徽医药;2009年04期
2 卢秀霞;何琳;陈莉;吴伟昂;史锐标;龙晓英;;灯盏花素的溶解度与油水分配系数的测定[J];广东药学院学报;2011年01期
3 胡宏伟;李剑勇;吴培星;周绪正;张继瑜;;纳米乳在药剂学中的研究进展及其应用[J];湖北农业科学;2009年03期
4 李艳萍;张志荣;;纳米乳的研究进展及其应用[J];华西药学杂志;2010年04期
本文编号:2003146
本文链接:https://www.wllwen.com/yixuelunwen/yiyaoxuelunwen/2003146.html
最近更新
教材专著