氨基酸对抗真菌药物的影响及其机制研究
[Abstract]:The incidence of fungal infection caused by Candida albicans has risen sharply. The clinical effects of improving fungal infection include increasing dose, changing drug types, two drugs or combination of various drugs. The combination of two drugs has many advantages, such as reducing the dose of toxic drugs, improving the effect of drug treatment, and increasing resistance. Fungal spectrum, retarding the occurrence of fungal resistance and so on. Amino acids are very active in clinical treatment, such as the use of Lysine Hydrochloride and Sodiun Chloride Injection for cerebral blood supply deficiency, acetylcysteine used in the treatment of chronic bronchitis, and the use of vitamin u- methionine in the treatment of ulcerative diseases, and so on. Therefore, amino acids are likely to be one of the sources of antifungal agents. We use lysine and cysteine as the research object to further study the effect and possible mechanism of lysine and cysteine enhanced amphotericin B on Candida albicans. This topic mainly through the interaction of amino acids and antifungal agents. Objective: to find a safe and effective combination regimen for treating fungal infections.
In this study, we examined the effects of exogenous amino acids on the antifungal agents, which showed that cysteine could significantly inhibit the growth of Candida albicans. The combined use of different amino acids and different antifungal agents had different effects on the growth of Candida albicans in vitro. (1) amino acids and caspofungin (CAS). The results of the combined interaction: cysteine, lyophile, shiny, semen, egg, egg, silk, bright, Gump, Gump, phenylpropyl, cheese, proline can significantly enhance the effect of CAS on Candida albicans, and aspartic acid can antagonize the effect of CAS on Candida albicans; and the results of the interaction between amino acids and miconazole (miconazole, MCZ): cysteine can significantly enhance the MCZ against white The effect of Candida, serine and methionine can antagonize the effect of MCZ on Candida albicans; (3) the interaction results of amino acids and amphotericin B (amphotericin B, AmB): cysteine, Lai, Su, shiny, sperm, eggs, bright, group, and proline can significantly enhance the effect of A "mB on Candida albicans, ornithine, tyrosine can antagonize AmmB against Candida albicans." The interaction between the amino acid and 5- fluorocytosine (5-Flucytosine, 5-Fu): cysteine, aspartic acid, and glutamic acid can significantly enhance the effect of 5-Fu on Candida albicans. Tryptophan and valine can antagonize the effect of 5-Fu on Candida albicans; 5. The interaction of amino acid and terbinafine, TER. Results: cysteine, Su, arginine can significantly enhance the effect of TER on Candida albicans. Methyl sulphur, asparagus, valley, phenylpropyl, C, tryptophan can antagonize the effect of TER on Candida albicans; 6. The interaction results of amino acids and shikonin (SK) combined: cysteine, sou, ISO, semen, eggs, phenylpropyl, color, birds, Gump, silk, and alanine can significantly enhance SK The role of Candida albicans, aspartic acid and leucine, can antagonize the action of SK on Candida albicans.
The effects of 20 different amino acids on the growth of Candida albicans and the effect of interaction with different antifungal agents on the growth of Candida albicans were detected by microdilution method. The results showed that cysteine could significantly inhibit the growth of Candida albicans. The inhibitory effect of threonine on the growth of Candida albicans was weak, and other amino acids were found. The growth of Candida albicans was not inhibited. Different amino acids and antifungal drugs had different effects on the growth of Candida albicans.
In the second part, the effects of lysine, cysteine alone and combined with AmB on Candida albicans and other strains were investigated. The antifungal effect of lysine on AmB and the antifungal effect of cysteine on AmB were further investigated through the experiment of spot assay, growth curve and survival rate. The experiment selected Candida albicans as the object of study, and the use of microsatellite in the experiment. 0.5mM lysine could enhance the anti Candida albicans effect of 0.25 mu g/ml by measuring the solution based lysine; 0.25mM cysteine could inhibit the growth of Candida albicans and enhance the effect of 0.25 mu g/ml AmB on Candida albicans. Similarly, 1mM lysine could enhance 0.5 mu g/ml AmB to nalaciasa (04013803929001822090220190201309). The antifungal effect of Cryptococcus neoformans 0201309, 0.25mM cysteine could affect Candida korubica ACCT2159, Candida smooth ACCT28226, and nearly smooth Candida 22090 growth.Spot aasay experimental results showed that the lysine group had no difference with the blank group, and the consistency of 8mM lysine above and 0.25 mu g/ml AmB could inhibit the growth of Candida albicans. Long, 1mM cysteine could inhibit the growth of Candida albicans. The growth curve also showed that the combination of 1mM lysine and 0.25 mu g/ml AmB could strongly inhibit the growth of Candida albicans compared with 0.25 mu g/ml AmB. We also examined the effect of AmB and lysine on the formation of the biofilm by the XTT reduction method. The results showed that 0. The combination of 5 g/ml AmB with 4mM lysine has strong inhibition on the formation of Candida albicans biofilm and the metabolic activity of biofilm cells. At the same time, mycelium growth proves that the effect of lysine and AmB on Candida albicans biofilm may be due to the inhibition of mycelium formation.
In the third part, the synergistic mechanism of lysine and AmB was studied. The main method was the transmission electron microscope to observe the effect of two drugs on the ultrastructure of Candida albicans. Flow cytometry was used to observe the effect of the combined use of two drugs on the cell cycle, and the production of ROS in the combined cells was detected by the multi-function microplate detector. Measurement of the mitochondrial membrane potential level after the combined use of two drugs by the JC-1 kit, the effects of AmB and lysine on the oxidative damage of Candida albicans were investigated. The results showed that AmB could increase the level of endogenous reactive oxygen species in Candida albicans, while AmB and lysine were used in the combination of lysine and lysine. There was no significant difference from that in the blank group; at the same time, we also used Real-time RT-PCR to investigate the expression of redox related genes. The results showed that compared with the AmB single use group, AmB and lysine combined with ROS scavenging related gene Sod2 expression level decreased, further promoting the accumulation of endogenous ROS in Candida albicans: however, compared with the AmB single use group, The expression levels of AmB and lysine combined with oxidative stress related genes (TRR1, CaMCA1, Cap1, GRP2) were all up regulated in varying degrees, and the oxidative stress of Candida albicans increased. In addition, AmB could reduce the level of lysine in the mitochondrial membrane potential of Candida albicans, while the mitochondrial membrane potential of Candida albicans with AmB and lysine was lower than that of lysine, lysine group and lysine group. There was no obvious difference in the blank group. Compared with the AmB single use group, the membrane in the cell division of lysine and AmB group was not obvious, even disappeared, the cell cycle was blocked in the G2/M phase, and the cell mitosis was blocked. There was no significant difference between the single use group and the blank group.
In the fourth part, the results of the study in vivo showed that cysteine alone had no therapeutic effect on systemic Candida albicans in mice, but cysteine combined with amphotericin B was better than the effect of amphotericin B alone, which was consistent with the effect in vitro.
To sum up, the study found that a variety of amino acids and antifungal agents have synergistic effect in vitro; cysteine has strong antifungal activity and can enhance the antifungal activity of AmB on Candida albicans in vivo and in vitro; lysine can enhance the sensitivity of Candida albicans to AmB in vitro. The main mechanism of which is to prevent cells from the cells. The formation of the septum during the division, the G2/M phase in the cell cycle, the increase of intracellular reactive oxygen species and the decrease of the mitochondrial membrane potential, and the combination of lysine and AmB can cause some changes in the expression of redox related genes.
【学位授予单位】:第二军医大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:R96
【相似文献】
相关期刊论文 前10条
1 邵先安;;淋巴细胞对白念珠菌的粘附[J];国外医学(微生物学分册);2002年04期
2 张军民,王汉平,鲁长明,席丽艳,曾凡钦;白念珠菌基因微卫星多态性与分型探讨[J];中国麻风皮肤病杂志;2002年01期
3 苑天红,王明永,吴升伟,吴承龙;小鼠腹腔吞噬细胞对二相性白念珠菌的吞噬研究[J];贵阳医学院学报;2004年04期
4 苑天红,王明永,吴升伟,吴承龙;甘露糖在介导二相性白念珠菌粘附中的重要作用[J];中国人兽共患病杂志;2004年11期
5 苑天红,王明永,吴升伟,王正蓉,吴承龙;白念珠菌二相性与毒力关系的实验研究[J];中国皮肤性病学杂志;2004年10期
6 李丰霞,张宏,巢和安,谢明;氟康唑联合乙醇抗白念珠菌活性的体外实验研究[J];中国皮肤性病学杂志;2005年10期
7 朱利平,章强强,龚华斐,李莉,翁心华,王家俊,张永信;都柏林念珠菌和白念珠菌分子指纹图谱差异性分析[J];中华传染病杂志;2005年04期
8 苑天红,王明永,吴升伟,王正蓉,吴承龙;白念珠菌二相性与致病性关系[J];中国公共卫生;2005年01期
9 马黎;席丽艳;;都柏林念珠菌和白念珠菌的致病性比较研究进展[J];中国麻风皮肤病杂志;2006年02期
10 黄杉;曹颖瑛;姜远英;;白念珠菌基因中断技术研究进展[J];第二军医大学学报;2006年05期
相关会议论文 前10条
1 王冬云;谭升顺;马慧群;马韵琴;陈庆秀;;白念珠菌的毒力研究——分泌性酸性蛋白酶活力的测定[A];2001年中国中西医结合皮肤性病学术会议论文汇编[C];2001年
2 满旭;王惠平;;白念珠菌转录因子编码基因表达与氟康唑耐药的关系[A];中华医学会第十八次全国皮肤性病学术年会论文汇编[C];2012年
3 黄广华;;白念珠菌有性生殖、形态发生及毒性的进化[A];中国菌物学会第五届会员代表大会暨2011年学术年会论文摘要集[C];2011年
4 王慧;徐宁;喻其林;程欣欣;邢来君;李明春;;钙细胞存活途径与白念珠菌的致病性[A];中国菌物学会第五届会员代表大会暨2011年学术年会论文摘要集[C];2011年
5 阎澜;李妙海;曹永兵;高平挥;王彦;姜远英;;白念珠菌耐药新蛋白——交替氧化酶[A];药学发展前沿论坛及药理学博士论坛论文集[C];2008年
6 郭仁勇;;白念珠菌聚苯乙烯黏附增强基因1的研究进展[A];2008年浙江省检验医学学术年会论文汇编[C];2008年
7 ;线粒体功能在不同环境对白念珠菌生存及代谢的影响[A];2012年中国菌物学会学术年会会议摘要[C];2012年
8 曾跃斌;;白念珠菌全基因组表达谱芯片在抗真菌药物研究中的应用[A];中国药理学会第十一届全国化疗药理学术研讨会论文集[C];2012年
9 周万青;沈瀚;张之烽;张葵;;白念珠菌临床分离调查及基因分型研究[A];中华医学会第七次全国中青年检验医学学术会议论文汇编[C];2012年
10 景伟芳;王惠平;;白念珠菌对唑类药物耐药机制的研究进展[A];中华医学会第十五次全国皮肤性病学术会议论文集[C];2009年
相关重要报纸文章 前1条
1 国虹 雨净;微生物的是是非非[N];中国教育报;2001年
相关博士学位论文 前10条
1 刘泽虎;白念珠菌形态、胞壁多糖的结构及其免疫学活性的相关研究[D];中国协和医科大学;2009年
2 唐宁枫;白念珠菌烯醇化酶的研究[D];中国协和医科大学;2000年
3 王平;阴道念珠菌菌种及香莲方逆转白念珠菌耐药基因组学研究[D];广州中医药大学;2013年
4 许懿;小檗碱与氟康唑协同抗耐药白念珠菌的作用机制研究[D];第二军医大学;2010年
5 李彩霞;阴道细菌群落多样性及外阴阴道念珠菌病相关白念珠菌基因多态性研究[D];北京协和医学院;2013年
6 王乐;小鼠口腔阴道双部位白念珠菌感染模型的构建及不同部位来源白念珠菌的毒力差异研究[D];北京协和医学院;2014年
7 曾跃斌;特比萘芬对白念珠菌的药理作用及诱导耐药机制研究[D];汕头大学;2007年
8 梁晓博;白念珠菌敏感株对氟康唑产生适应性突变耐药的研究[D];第二军医大学;2000年
9 徐铮;白念珠菌基因芯片的制备和应用及两个新基因的克隆和功能鉴定[D];第二军医大学;2005年
10 阎澜;白念珠菌耐药性产生的“线粒体氧化呼吸抑制”机制[D];第二军医大学;2009年
相关硕士学位论文 前10条
1 刘乐;不同培养条件对白念珠菌芽管形成的影响[D];兰州大学;2008年
2 阎澜;白念珠菌耐药株的蛋白质组与基因表达谱分析及差异蛋白质与差异基因的识别鉴定[D];第二军医大学;2006年
3 秦晓峰;白念珠菌临床株耐药基因表达与氟康唑耐药的关系[D];第二军医大学;2006年
4 许懿;小檗碱与氟康唑协同抗耐药白念珠菌作用的蛋白质组学研究[D];第二军医大学;2007年
5 钟毅;白念珠菌苹果酸脱氢酶的结构及功能初步研究[D];中山大学;2012年
6 张蕾;紫外线对白念珠菌生长的影响[D];福建医科大学;2012年
7 郭雅莉;白念珠菌多位点序列分型研究[D];天津医科大学;2012年
8 满旭;白念珠菌锌簇转录因子编码基因表达与氟康唑耐药的关系[D];天津医科大学;2013年
9 吴海棠;整合非靶标和靶标代谢组学模式的白念珠菌被膜形成及药物干预机制研究[D];第二军医大学;2013年
10 李蕾;白念珠菌天冬氨酸蛋白酶2真核表达载体的构建及原核表达[D];中国人民解放军军医进修学院;2009年
,本文编号:2169019
本文链接:https://www.wllwen.com/yixuelunwen/yiyaoxuelunwen/2169019.html