基于机器学习的天然产物抗肿瘤和免疫调节活性研究
[Abstract]:Natural products play an important role in cancer chemotherapy, immunomodulation, neuroprotection, regulation of energy metabolism, anti microbial and cardiovascular disease treatment. They are likely to provide us with the structure of many pilot compounds and can be used as a template for drug delivery in the prevention and treatment of various diseases. The anti-tumor activity of natural products and the immunomodulatory activity of three terpenoid saponins in natural products are studied. The prediction models are established by machine learning methods and the key chemical structures that can describe the corresponding bioactivity of natural products are found. The methods and results of this paper are based on natural products. The development and utilization of drugs, the treatment of disease, and the study of the structure-activity relationship of natural products. (1) the research method of natural product antitumor research methods usually can obtain some key structural properties, such as some chemical bonds or chemical groups. In the study of tumor activity, we usually first determine the effect of this structural feature on a single cancer type or cell line. In this article, we first developed a machine learning method to comprehensively predict the anti-tumor effects of natural products on a series of cancer cell lines. Here we use the base of the cancer cell line at the same time. The chemical structure features (chemical descriptors) of group information (gene expression) and natural products. When these machine learning models are applied to two datasets, training sets and independent test sets, these prediction models show very good prediction accuracy. In addition, we also prove that this method has two natural products, namely ginger. The ability to predict the antitumor activity of lutein and resveratrol, which indicates that the method can effectively predict the one-to-one correspondence between the two natural products and various cancer cell lines, and also linked the patient's genomic information to the sensitivity of natural products. In recent years, many natural products have been isolated and purified in the laboratory and have been proved to have some antitumor activity, such as camptothecin, Changchun anthraquinone, maxoquinone, paclitaxel and so on. Products have played a key role in the treatment of a variety of cancers such as melanoma, leukemia, and breast cancer. In addition, more and more new derivatives based on natural product structures have become antitumor candidates. However, it is extremely time-consuming and laborious to screen natural products by experimental methods. Methods to study its structure-activity relationship is a good choice. The traditional methods for studying structure-activity relationships are mostly chemical background researchers based on the basic skeleton of pilot compounds to synthesize a series of analogues and predict their anti-tumor activity according to experience. Using structural information to try to predict the inhibition of a single cancer cell line or a single tissue type. Although many results have been achieved, the problem is far from being well solved. In order to obtain a comprehensive analysis, we intend to use a new approach based on chemical structure and genomic information. A simultaneous detection of the sensitivity of several known cancer cell lines to hundreds of natural products. We first established a machine learning method to predict the response of cancer cell lines to natural products by using the gene expression data of the cancer cell lines and the chemical descriptors of the natural product structure. The experimental results of the training set and test set have proved that Our approach can be more satisfactory in predicting the sensitivity of hundreds of cancer cell lines. It also demonstrates the combination of structural features and gene expression characteristics, which has an important role in determining the antitumor activity of natural products, the project's prediction of drug reactions and the discovery of new natural sources. (2) study on the immunomodulatory activity of three terpene saponins, three terpenoid saponins are considered to be a series of bioactive compounds, which are produced by plants to impede the invasion of pathogenic bacteria and herbivorous animals. "Saponins" here refer to a class of glycosides with a glycoside ligand and a covalent binding of saponins. Natural compounds in one or more sugar parts. Most known three terpenoid saponins belong to the secondary metabolites of plant origin, although a few of the saponins are found in marine animals, such as sea cucumbers and starfish. The ability to synthesize three terpenoid saponins is widely distributed in plants of the quilt gate, whether dicotyledonous or single. Cotyledon. The study of three terpenoid saponins from natural sources has made considerable progress, usually based on their glycoside skeleton structure, such as oleanane type, uranane type, lupane type, lehpane type, ring bromelane type, calamane type, lanolin sterane type, damanane type, cucurbanane type and sea cucumber, and so on. Three terpenes. Biological and pharmacological activities of saponins have recently been confirmed in many studies, such as antiallergic reaction, anti atherosclerosis, antithrombotic, antithrombotic, antidiabetic, antidiabetic, contraceptive, antifungal, anti inflammatory, anti Leishmania, antimalarial, anti obesity, anti proliferation, treatment of psoriasis, antispasm, antiviral, cytotoxicity, antitumor, detoxification, antidote, antidote, and gastric preservation. Protection, hemolysis, liver protection, immunomodulation, anti enzyme, anti osteoporosis, insecticide, insulin like, membrane porous, snail, neuroprotection, anti endothelial cell dysfunction and snake venom antidote and so on. Three terpenoid saponins are active components in some Chinese medicine and have higher pharmacological properties and are obtained in the field of drug development. Researchers have paid more and more attention. So a lot of work has been put into the study of the mechanism of three terpenoid saponins and their industrialization potential. Although the ability to produce three terpenoid saponins in widely distributed plants, the understanding of its structure-activity relationship is still not fully elucidated in any kind of plant. In our work, we focused on the study of the immunomodulatory activity of three terpenoid saponins and developed a prediction model using their chemical characteristics and machine learning algorithms. The data set required for the establishment of the model was manually retrieved from existing literature. The machine learning model was established for the first time to predict the immunomodulatory activity of three terpenoid saponins. The method in this study may be helpful to the research and understanding of the structure-activity relationship of three terpenoid saponins. The results in this study will help researchers to predict the activity of saponins and reveal the mechanism of their pharmacological effects.
【学位授予单位】:安徽大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:R96
【相似文献】
相关期刊论文 前10条
1 ;海洋动物中天然产物有望成为治疗癌症新药[J];中国中医药信息杂志;2005年08期
2 ;《天然产物资源化学》[J];科学通报;2008年21期
3 ;第58届天然产物高登研究会议(英文)[J];中国天然药物;2009年02期
4 薛鲍;;我校承办第三届中泰天然产物与药物发现双边学术研讨会[J];西北大学学报(自然科学版);2010年06期
5 岳凤先;中药优势的根本:理论体系?天然产物?[J];中国中医基础医学杂志;1995年01期
6 周莉;心胸博大,回归天然深圳博大天然产物有限公司介绍[J];药物生物技术;1998年03期
7 陆江海;李秀兰;刘沁舡;赵玉英;;天然产物与药物的发现[J];国外医药(植物药分册);2000年02期
8 庾石山,冯孝章;新型结构活性天然产物的化学研究[J];中国医学科学院学报;2004年04期
9 王普善;天然产物在新药发现中的地位与机会(I)——重新审视天然产物药物发现战略[J];中国医药导刊;2005年05期
10 杨振寰,刘霞;制备高效液相色谱在天然产物分离中的应用[J];中成药;2005年12期
相关会议论文 前10条
1 胡金锋;;低于200μg的微量天然产物能鉴定其化学结构吗?[A];第七届全国天然有机化学学术研讨会论文集[C];2008年
2 胡立宏;;经典天然产物的再研究[A];第七届全国天然有机化学学术研讨会论文集[C];2008年
3 张卫东;;天然产物发现与生物学研究相结合的思考[A];第七届全国天然有机化学学术研讨会论文集[C];2008年
4 尤启冬;;基于天然产物的新药物研究[A];2010年中国药学大会暨第十届中国药师周论文集[C];2010年
5 再帕尔·阿不力孜;;基于质谱技术的天然产物分析方法研究[A];中国化学会第八届天然有机化学学术研讨会论文集[C];2010年
6 胡金锋;;利用天然产物调控脑功能基因的研究[A];第七届全国天然有机化学学术研讨会论文集[C];2008年
7 孙昊鹏;郭青龙;尤启冬;;基于天然产物的创新药物研究[A];2011年全国药物化学学术会议——药物的源头创新论文摘要集[C];2011年
8 唐功利;;复杂抗肿瘤天然产物的生物合成研究[A];中国化学会第9届天然有机化学学术会议论文集[C];2012年
9 董国强;王胜正;缪震元;张万年;盛春泉;;基于抗肿瘤天然产物的化学生物学和新药发现[A];第八届全国化学生物学学术会议论文摘要集[C];2013年
10 王尉;杜宁;周晓晶;张婉;周悦;张经华;;高速逆流色谱技术在天然产物研制方面的应用[A];全国生物医药色谱学术交流会(2010景德镇)论文集[C];2010年
相关重要报纸文章 前10条
1 文星明;湖南组建天然产物国际合作基地[N];中国化工报;2007年
2 本报记者 赵秋丽邋通讯员 吕善锟;以天然产物标样研究推进中药国际化[N];光明日报;2008年
3 柯华 本报记者 洪继东;从天然产物里提取“金子”[N];成都日报;2010年
4 记者 路平 通讯员 华萱;孙宝国院士当主任[N];广东科技报;2010年
5 杨杰松 金永红;专家呼吁——加强以天然产物为来源的药物创新[N];健康报;2009年
6 魏锋 马双成 林瑞超 金红军;天然产物化学研究概况[N];中国医药报;2000年
7 高成森;我国天然产物数据库投入使用[N];中国医药报;2002年
8 罗静;南大教授获英国皇家化学会奖[N];中国化工报;2007年
9 记者 陈雪;银广夏组建天然产物研发中心[N];中国证券报;2000年
10 刘洋邋郑利刚 程卯生;组合库设计策略助力新药研发[N];中国医药报;2007年
相关博士学位论文 前10条
1 陈旺;DNA拓扑异构酶Ⅱα拟天然产物抑制剂的设计合成与抗肿瘤活性研究[D];山东大学;2015年
2 刘杰;色酮类天然产物的全合成研究[D];兰州大学;2015年
3 孔凡栋;四株海洋来源真菌活性次级代谢产物的研究[D];中国海洋大学;2015年
4 杨娟;Communesin类天然产物的合成研究及基于钯、铜催化的C-H官能团化的合成方法学研究[D];兰州大学;2013年
5 Piar Ali;天然产物的系统性药物筛选和药物靶点相互作用预测[D];西北农林科技大学;2016年
6 尹建朋;天然产物Paracaseolide A 和 Aphadilactones A-D的全合成及构效关系研究[D];兰州大学;2016年
7 田天;苯并螺环缩酮类天然产物骨架的不对称构筑以及Murrayazoline的全合成研究[D];兰州大学;2016年
8 王勇;天然产物Rubriflordilactone B的合成研究[D];兰州大学;2016年
9 王立言;计算化学在天然产物化学中的若干应用研究[D];华东理工大学;2013年
10 薛松;海绵活性天然产物分离及结构确定[D];中国科学院研究生院(大连化学物理研究所);2003年
相关硕士学位论文 前10条
1 马晓琴;手性黄烷酮及苯并吡喃类黄酮天然产物的全合成研究[D];宁夏大学;2015年
2 唐琳钧;天然产物Jaspine B及其异构体的不对称全合成研究[D];江西科技师范大学;2015年
3 陈世鹏;天然产物Aculeatins A,B,D以及6-epi-D的不对称全合成研究[D];江西科技师范大学;2015年
4 张建廷;天然产物(+)-Ieodomycin A和B的不对称全合成研究[D];江西科技师范大学;2015年
5 杨鸿智;氧化去芳香化策略在天然产物仿生全合成中的应用[D];清华大学;2015年
6 岳振宇;基于机器学习的天然产物抗肿瘤和免疫调节活性研究[D];安徽大学;2016年
7 张军庆;基于齐墩果酸的“类天然产物”合成研究[D];西南科技大学;2015年
8 李雪梅;对线粒体有调节作用的天然产物S的发现及作用机制研究[D];上海师范大学;2013年
9 李斌;澳大利亚厚皮海绵天然产物的研究[D];中国科学院研究生院(大连化学物理研究所);2004年
10 姬海涛;从天然产物中筛选并表征基质金属蛋白酶抑制剂的研究[D];吉林大学;2006年
,本文编号:2172397
本文链接:https://www.wllwen.com/yixuelunwen/yiyaoxuelunwen/2172397.html