双聚类算法研究及其在我国药品不良反应监测中的应用
[Abstract]:BACKGROUND AND OBJECTIVE: As an important part of post-marketing safety monitoring, ADR spontaneous reporting system can collect ADR reports extensively and realize timely monitoring of ADR. The number of ADRs surged to more than 1.4 million. Researchers can detect a large number of ADR signals from the data of the spontaneous reporting system by using the method of asymmetric measurement, which provides a basic basis for drug safety evaluation. At present, the evaluation methods of ADR signal mainly include comparing the detected ADR signal with the data of drug instructions and conducting expert evaluation. The evaluation efficiency is low. How to improve the efficiency of signal evaluation is a researcher in the field of ADR monitoring. It is pointed out that the analysis of multiple similar signals containing the same adverse reaction or multiple similar signals containing the same drug may improve the efficiency of signal evaluation. Class analysis method is used to identify the similar signal combination in the ADR signal data of our country. The information of the confirmed signals in the combination is used to evaluate the evaluation signal quickly, and the efficiency of signal evaluation is improved. The algorithm is introduced into the analysis of ADR signal data in China. The original quantitative data matrix is constructed from the detected ADR signal data. The quantitative matrix is transformed into different 0-1 data matrix according to the IC value threshold of distinguishing strong and weak signals, and the different 0-1 data matrix is doubly aggregated by combining different Bimax algorithm parameters. Classification analysis identifies several drug-adverse reaction combinations whose corresponding signal values exceed the threshold, and obtains the information of similarity signal combinations. Then, the rank sum ratio comprehensive evaluation method combined with the average coincidence ratio, involving two indicators of the ratio, is used to evaluate the results of the analysis of the double clustering, and the IC value threshold and the maximum value of the optimal discrimination between strong and weak signals are determined. Finally, the application effect of bi-clustering algorithm in the analysis of ADR signal data in China is clarified. The results show that the optimal region is determined by comparing the results of bi-clustering method under different parameter combinations with rank sum ratio comprehensive evaluation method. The thresholds of the strong and weak signals are IC=0.80, and the optimal parameters of the Bimax algorithm are the minimum number of rows of two clusters and the minimum number of columns of two clusters. Analogical evaluation showed that 1836 clusters, accounting for 42.8% of the total number of clusters and involving 72.3% of IC values not less than 0.80, contained similarity of drugs or adverse reactions; at least 4272 clusters, accounting for 99.5% of the total number, contained confirmation signals from the drug specifications. All the signals were confirmed by the drug instructions in 193 clusters, accounting for 4.5% of the total. Risperidone was the most frequent drug in all the clusters, accounting for 16.5% of the total 708 clusters, and liver dysfunction was the most frequent adverse reaction, accounting for 16.8% of the total 720 clusters. CONCLUSION: Bicluster analysis of ADR signal data in China can provide valuable information for identification of potential ADR, screening of ADR signal and so on. It can improve the efficiency of signal evaluation in ADR monitoring in China.
【学位授予单位】:第二军医大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R95
【参考文献】
相关期刊论文 前10条
1 黄维佳;;浅析“毒副作用”与“不良反应”[J];中国科技术语;2016年05期
2 朱磊;黄萍;李颖;;我国药品不良反应监测现状及存在问题[J];中国药事;2016年07期
3 雷右喜;;综合评价研究方法综述[J];商场现代化;2016年02期
4 史文涛;侯永芳;叶小飞;朱田田;张天一;吴桂芝;贺佳;;我国药品不良反应自发呈报系统中信号强度分级阈值的探索[J];药物流行病学杂志;2015年08期
5 路长飞;田月洁;;基于盐酸克林霉素注射剂不良反应监测数据探索聚类分析方法在药品不良反应监测中的应用[J];中国药物警戒;2014年01期
6 楼陆军;刘银生;罗洁霞;朱寒根;高云;;再论我国药品不良反应监测的现状与完善对策[J];中国药业;2012年18期
7 张敏;戈文航;;双聚类的研究与进展[J];微型机与应用;2012年04期
8 吴嘉瑞;张冰;;试论数据挖掘决策树方法在药物警戒研究中的应用[J];中国药物警戒;2012年01期
9 王志刚;陈鑫;谢丽芳;杨啸林;张正国;;药物功能模式相似度及其聚类[J];中国生物医学工程学报;2011年06期
10 冯变玲;杨世民;蓝夏璐;魏芬;尤海生;;心脑血管疾病用药不良反应与药品品种关系的聚类分析[J];中国药业;2011年06期
相关会议论文 前1条
1 冯变玲;杨世民;尤海生;蓝夏璐;魏芬;;基于数据挖掘技术的心脑血管用药不良反应与药品品种间聚类分析[A];2010年中国药学大会暨第十届中国药师周论文集[C];2010年
相关博士学位论文 前1条
1 于跃;基于大数据挖掘的药品不良反应知识整合与利用研究[D];吉林大学;2016年
相关硕士学位论文 前2条
1 汪晶;我国药品不良反应自发呈报系统信号检测中压缩估计参数的探索[D];第二军医大学;2015年
2 李莉;五种双聚类算法在基因表达谱数据中的比较与评价[D];西北农林科技大学;2012年
,本文编号:2184552
本文链接:https://www.wllwen.com/yixuelunwen/yiyaoxuelunwen/2184552.html