CRF对大鼠海马神经元结构的直接效应及机制研究
[Abstract]:Stress is defined biologically as a variety of physiological changes, including homeostasis of the internal environment and activation of the pituitary adrenal axis. The corticotropin releasing factor (CRF) is released by the hypothalamus under stress conditions to activate the hypothalamus-pituitary-adrenal axis (HPA axis), in which case the negative feedback loop can inhibit further synthesis and release of the CRF, However, in the case of abnormal HPA axis regulation, negative feedback dysfunction, excessive increase of plasma glucocorticoid synthesis release, and eventually lead to the damage of neurons. However, it has been found that in addition to neuronal damage caused by HPA axis, CRF can also cause damage to hippocampal neurons through interaction with central CRF receptors. Therefore, the damage effect and possible mechanism of CRF on hippocampal neurons can be explored, which can provide new theory and experimental basis for the molecular mechanism of the central nervous system of stress injury. Objective: To study the molecular mechanism of CRFR1 receptor signaling pathway leading to the damage of central nervous system (CNS) and to reveal the pathophysiology of neuropsychiatric disorders associated with chronic stress. The mechanism is to provide new theory and experiment to clarify the molecular mechanism of chronic stress injury central nervous system. Methods: 1. Immunofluorescence method was used to analyze the effect of CRF on hippocampal neuron structure: To culture primary hippocampal neurons to the fifth day, CRF (0.02. mu.M, 0.2. mu.M, 2. mu.M) to treat the primary cultured rat hippocampal neurons, and to continue the culture. The changes of the cell structure of hippocampal neurons were observed under the microscope, and then the hippocampal neurons were labeled with Mitogen Activated Protein-2 (Mitogen Activated Protein, MAP2), and the hippocampal neurons were observed by immunofluorescence. The changes of hippocampal neurons were treated with CRFR1 specific antagonist (DMP696), and the changes of hippocampal neuronal cell structure in the control group, CRF treatment group and CRF + specific antagonist (DMP696) were observed under the same microscope, then the hippocampus was labeled with MAP2. Observation of hippocampal neurons by neuron-derived dendritic and immunofluorescence method The effect of CRF on the activity of hippocampal neurons was determined by the change of dendritic cells. Blank group (no cells), control group (no drug group), CRF (0.002. mu.M, 0.2. mu.M, 2. mu.M) Treatment Group. Culture to Day 10 S The cell viability was measured by RB method. 3. Western blot analysis was closely related to neuronal growth: cultured primary hippocampal neurons to day 5, CRF (0.02. mu.M, 0.2. mu.M, 2. mu.M) treated primary cultured rat hippocampal neurons. The changes of cAMP response element binding protein (CREB), microtubule-associated protein (Tau) phosphorylation level, and postsynaptic density protein-95 (PS) were analyzed by Western blot. D95) Changes in protein levels, observing whether CRF is above hippocampal neuronal cells Protein kinase A (PKA), inositol (MAPK), 1, 4, 5-triphosphoinositide (MAPK), 1, 4, 5-triphosphoinositide (IP3) and phospholipase C (Pho) were used in primary cultured rat hippocampal neurons. pholipase C, PLC The changes of CREB and Tau phosphorylation were detected by Western blot, and the changes of MAP2 and PSD95 protein levels were detected by Western blot. The change of the expression level of key molecular mRNA closely related to neuronal growth was analyzed by RT-PCR. The primary cultured rat hippocampal neurons were treated with CRF and DMP696. hippocampal neurons continue to be cultured for 10 days. RT-PCR detect CREB, Tau, MAP2, Changes in the expression of PSD95mRNA. The changes of cAMP content in hippocampal neurons were detected by cyclic voltammetry (cAMP) release test. The changes of cAMP content in hippocampal neurons were detected in 5, cylic Adenosine monophate (cAMP) release assay. The primary hippocampal neurons were cultured for the tenth day, and the cAMP release assay was used to detect the CRF stimulating sea. The content of cAMP in hippocampal neurons was changed, and DMP696 was tested to stimulate the sea. The effect of cAMP on the release of cAMP in hippocampal neurons. Results: 1, 2. m CRF can induce the decrease of dendritic density in hippocampal neurons, and the specific antagonist (DMP696) can be used to treat the cells. The inhibitory effect of CRF on the cell viability of hippocampal neurons was inhibited, and the activity of CRF (0.2. mu.M, 2. mu.M) cells was 71. 6 卤 3.1%, 72. 6-3, respectively. 5% (n = 3, ** * P0. 001 vs. control). 3, 2. m MCRF down-regulated MAP2, P-CREB protein levels in hippocampal neurons, up-regulated PSD95, P-Tau protein levels; CRFR1 specific antagonist (DMP696) antagonized the MAP2, P-CR caused by CRF. Down regulation of EB protein and upregulation of PSD95, P-Tau protein; PKA specific inhibitor H89 antagonized CR Down-regulation of MAP2 protein induced by F and upregulation of P-Tau protein level. The expression level of PSD95 and MAP2 in hippocampal neurons was changed with protein water. There was no significant change in the level of mRNA expression of Tau and CREB. 5. cAMP release assay showed that CRF could regulate the cAMP content of hippocampal neurons in concentration-dependent manner (P = (3.157, 0. 133), 10-9M, n = 3), and the specific antagonist, DMP696, could reduce 2. m cAMP Release of hippocampal neurons induced by RF Conclusion: CRF induced hippocampal neuronal structural damage by the action of CRFR1, its function and downregulation MAP2. and the protein level of P-CREB is correlated with the level of PSD95 and P-Tau protein. The CRF promotes the release of cAMP, suggesting that the G protein coupled by CRFR1 is Gs.
【学位授予单位】:中南大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:R96
【共引文献】
相关期刊论文 前10条
1 陈永君;张猛;王璞;朱心红;高天明;;Neuregulin-1温度依赖性抑制小鼠海马脑片CA1区的长时程增强[J];南方医科大学学报;2008年10期
2 Urmila M Aswar;Padmaja P Kalshetti;Suhas M Shelke;Sharad H Bhosale;Subhash L Bodhankar;;Effect of newly synthesized 1,2,4-triazino[5,6-b]indole-3-thione derivatives on olfactory bulbectomy induced depression in rats[J];Asian Pacific Journal of Tropical Biomedicine;2012年12期
3 李大鹏;刘冰心;王启之;;肠易激综合症患者结肠组织中促肾上腺皮质激素释放因子受体表达的研究[J];中国组织化学与细胞化学杂志;2013年06期
4 Xun-Xun CHU;Joshua Dominic Rizak;Shang-Chuan YANG;Jian-Hong WANG;Yuan-Ye MA;Xin-Tian HU;;A natural model of behavioral depression in postpartum adult female cynomolgus monkeys (Macaca fascicularis)[J];动物学研究;2014年03期
5 葛治娟;马晓芸;郑建全;;促肾上腺皮质激素释放因子对海马神经元树突生长发育的影响[J];国际药学研究杂志;2014年06期
6 舒先涛;陈运才;;海马促肾上腺皮质激素释放因子与神经元树突发育[J];解剖学杂志;2008年03期
7 徐盟;王涛;金莺;田伟;;5-脂氧化酶与阿尔茨海默病[J];解剖科学进展;2013年05期
8 董玉霞;孙晓红;何悦;杨洋;姜源;马超;刘晓楠;李慧源;;抑郁症大鼠海马BDNF及其受体TrkB和p75NTR的表达及米氮平的调节作用[J];脑与神经疾病杂志;2014年03期
9 安磊;李静;张有志;李云峰;;糖皮质激素受体:抑郁症治疗的潜在靶标[J];军事医学;2014年11期
10 陈学群;赵阳;杜继曾;;低氧应激与脑-内分泌-免疫网络调节——CRF和CRFR1的主导调控作用[J];生理科学进展;2013年05期
相关博士学位论文 前10条
1 陶然;SIAT8B和PDLIM5基因与中国汉族人精神分裂症发生的关联分析[D];中国科学院研究生院(上海生命科学研究院);2007年
2 郭素芹;儿童精神分裂症与神经发育异常关系的研究[D];中南大学;2007年
3 王强;首发精神分裂症的神经认知功能和分子遗传学研究[D];四川大学;2006年
4 王育红;缰核负反馈通路在海洛因精神依赖中作用和机制研究[D];中南大学;2008年
5 郝以辉;精神分裂症患者同胞对脑白质的磁共振研究[D];中南大学;2009年
6 王晓晟;人脑海马体积测量及其在精神疾病中的应用[D];中南大学;2012年
7 王利锋;儿童期创伤相关抑郁症的静息态脑功能网络研究[D];中南大学;2013年
8 白玫;慢性应激诱发抑郁的多巴胺能神经通路异常机制[D];中南大学;2013年
9 王曦;妊娠期间歇低氧诱导大鼠子代类焦虑样行为的CRH1型受体表观遗传学机制研究[D];浙江大学;2013年
10 孔繁平;神经肽CRH作为急性高原低氧应激损伤的生物标志分子研究[D];浙江大学;2013年
相关硕士学位论文 前10条
1 刘新;促肾上腺皮质激素释放因子对人胶质瘤U87MG细胞增殖及p53表达的相关性研究及意义[D];河北医科大学;2013年
2 马超琼;结合基于体素的形态学分析和静息态fMRI对抑郁症的研究[D];电子科技大学;2013年
3 孙霞;PAX6基因单核苷酸多态性与精神分裂症的关联性研究[D];天津医科大学;2013年
4 杨遥;REM睡眠剥夺对小鼠海马tau蛋白磷酸化的影响[D];石河子大学;2013年
5 刘静;间断性缺氧对小鼠海马tau蛋白磷酸化的动态影响[D];石河子大学;2013年
6 王芸;CPZ诱导精神分裂症模型小鼠海马脱髓鞘改变与行为学改变关系的研究[D];重庆医科大学;2013年
7 苏虹;微波辐射对大鼠回肠的形态学改变及其作用机制研究[D];福建医科大学;2012年
8 朱礼星;长期噪声暴露对大鼠海马及皮层tau蛋白磷酸化的影响[D];天津体育学院;2013年
9 侯平;铜离子及铜相关蛋白CUTA在APP表达及Aβ生成中的作用研究[D];厦门大学;2014年
10 牟鹏飞;与老年性痴呆相关基因TREM2的转录调控研究[D];厦门大学;2014年
,本文编号:2287991
本文链接:https://www.wllwen.com/yixuelunwen/yiyaoxuelunwen/2287991.html