可系统性给药的蜂毒肽脂质纳米颗粒及其抗黑色素瘤作用研究
[Abstract]:The bee venom peptide, as the main component of bee venom, is an amphiphilic polypeptide with a polar helix structure. The bee venom peptide has wide application in the treatment of diseases, and has the effects of resisting inflammation, relieving pain, resisting bacteria, resisting virus, resisting radiation and lowering blood pressure, and the like. The bee venom peptide has the unique advantages of being applied to the treatment of the tumor, and the cell lysis and death can be caused by punching on the plasma membrane, so that the drug resistance problem of the tumor is avoided. However, the problems of haemolytic, non-specific and easy to be metabolically degraded by the bee venom peptide have seriously hindered their clinical application in the field of anti-tumor. It is still a challenge to how to safely and effectively transport the bee venom peptide to the tumor tissue without any toxic and side effect. The method has the advantages of effectively solving the hemolysis problem of the bee venom peptide in the treatment of the in-vivo tumor and prolonging the cycle period in the body, and realizing the specific release in the tumor region, The following results were mainly obtained: (1) The invention provides a novel functional hybrid polypeptide-melitti containing a bee venom peptide, N. It is by covalent attachment of a bee venom peptide to an apoprotein mimic peptide of a polar helix. The method has the advantages that, on the basis of the properties such as the spontaneous formation of the multimer and the lysing cell of the bee venom peptide, the antigen-melittin has stronger phospholipid affinity and the formation energy of the dendritic spiral structure, L-melittin has a more powerful particle size control, and the particle size of the nano-particles formed by the phospholipid can be controlled to be about 10 nm or less, and has a very high encapsulation rate (80%, compared to the P-peptide. and (2) using the lipid nano-particles I-melittin-NP synthesized by the chitosan-melittin to realize the safety of the bee venom peptide in the living body, It is a spherical nano-particle with a particle size of about 14 nm and a good dispersivity, and its core can carry water at the same time. Stable, stable in physiological solutions, such as serum and plasma. The cationic charge (21.33-1.64 mV) of the bee venom peptide (21.33-1.64 mV) was effectively hidden by the connection design of the hydrophobic amino acid and the strong binding of the antigen-melittin with the phospholipid layer. MV). The antigen-melittin-NPs significantly reduce the hemolytic and non-specific rupture of the bee venom peptide. The results of in vitro hemolysis showed that the lysis of the blood cells was significantly reduced, even at a high concentration of 501. m u.M, even at a high concentration of 501. m The results of cell proliferation showed that the IC50 value of the inhibition of cell growth (11.26-1.37. mu.M) was significantly higher than that of the melittin (1.71-0.04. mu.M). The results of laser confocal continuous imaging show that the cell membrane permeability changes after contact with melanoma cells, inducing the leakage of the cell contents and the decomposition of the nucleus, leading to the fine formation of the cell membrane. The results of two-color labeling and flow analysis of Annexin V-FITC/ PI showed that the main route of tumor cell death was necrosis, and a small number of cells could be induced by the two-color labeling and flow analysis of Annexin V-FITC/ PI. Apoptosis. Finally, the antigen-melittin-NPs was injected into the subcutaneous tumor by the tail vein. The growth of melanoma was significantly inhibited after 4 administration, and the inhibition rate was as high as 82 in the control group. 8%. At the same time, by the detection of the physiological and biochemical indexes of the blood of the treated mice, and the analysis of the pathological sections of the organs, it is not shown that the antigen-melittin-NPs is toxic to the body. Side effects. (3) Preparation of ultra-small nanoparticles (PTX-OL)1-melittin-NPs for simultaneous transport of paclitaxel and bee venom, with synergistic anti-black The role of the antigen-melittin-NPs in the interaction with the tumor cells is observed by a laser confocal microscope, and the bee venom peptide is released to the membrane system, including the plasma membrane, while the dye molecules in the core are directly released. (PTX-OL)-Melittin-NPs played the role of paclitaxel and melittin in two treatment mechanisms. The results of the experiment of tumor cell proliferation showed that (PTX-OL)-melittin-NPs increased the killing efficiency of melanoma and the IC50 value was 44.8% of the antigen-melittin-NPs. The Annexin V-FITC/ PI two-color marker and the flow analysis showed that, compared with the P-melittin-NPs, (PTX-OL)-melittin-NPs can induce more fine. Necrosis of the cell, the lifting amplitude is 1 0-20%. Also, in the treatment of live melanoma, (PTX-OL)--melittin-NPs also exhibit enhanced tumor growth To sum up, the present study makes use of the HDL-polypeptide lipid nanoparticles as the carrier of the bee venom peptide, and effectively solves the hemolytic and non-special effects of the bee venom peptide in the in-vivo transportation by hiding the bee venom peptide in the single-layer phospholipid molecule layer. The problem of the opposite sex effect improves the circulating half-life of the bee venom peptide in the body, and is a method for treating the tumor by using the bee venom peptide in the living body. The method of the invention can break through the limitation of the single target in the treatment of the tumor, and is a multi-target therapy for the tumor,
【学位授予单位】:华中科技大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:R943;R96
【相似文献】
相关期刊论文 前10条
1 杨小浪;董江涛;陈文彬;缪晓青;;蜂毒肽抗肿瘤研究新进展[J];中国蜂业;2013年21期
2 乔廷昆;;蜂毒肽[J];蜜蜂杂志;1989年04期
3 张雪梅,杨申,江明华;蜂毒肽与钙调蛋白[J];国外医学.药学分册;1999年04期
4 杨志林;柯以铨;徐如祥;彭萍;;蜂毒肽对人神经胶质瘤细胞的增殖抑制和诱导凋亡作用[J];南方医科大学学报;2007年11期
5 赵亚华;李日清;张微;钟杨生;梁祖承;林健荣;;蜂毒肽的溶血作用与红细胞膜上两种酶活性变化的关系(英文)[J];中国生物化学与分子生物学报;2008年06期
6 李晶华;王晓华;王宗仁;行利;马静;;蜂毒肽大鼠足三里微量注射的抗炎、镇痛作用研究[J];陕西中医学院学报;2012年04期
7 朱文赫;田立玲;孙妙囡;孙德军;;蜂毒肽基因在大肠杆菌中的表达、纯化及初步鉴定[J];中国生化药物杂志;2010年01期
8 胡峗;李万瑶;崔韶阳;;蜂毒肽对心血管系统影响的实验研究综述[J];广州中医药大学学报;2011年05期
9 徐彭,欧阳永伟,黄敬耀,张桂英,肖诚,刘波;从蜂毒中分离纯化蜂毒肽的实验研究[J];中草药;2000年12期
10 顾桂秋;钱鹤声;;蜂毒肽生物学活性和药理作用的研究进展[J];中国蜂业;2006年08期
相关会议论文 前10条
1 刘盛权;王峰;唐麟;桂文君;曹鹏;Alice Wing-Sem Poon;邵鹏柱;江涛;;来源于Polistes jadwagae的蜂毒肽的晶体学研究[A];第八届中国生物毒素学术研讨会论文摘要[C];2007年
2 杨文超;田媛媛;张中印;吴珍红;缪晓青;;蜂毒肽及蜂毒制剂神蜂精对受照射小鼠存活率的影响[A];第四届中国畜牧科技论坛论文集[C];2009年
3 刘盛权;王峰;唐麟;桂文君;曹鹏;Alice Wing-Sem Poon;邵鹏柱;江涛;;来源于Polistes jadwagae的蜂毒肽的晶体学研究[A];第八届中国生物毒素学术研讨会论文摘要集[C];2007年
4 钮利喜;吉雪雪;李娇;;蜂毒肽基因在大肠杆菌中的融合重组表达[A];第三届泛环渤海(七省二市)生物化学与分子生物学会——2012年学术交流会论文集[C];2012年
5 杜意如;肖勇;吕卓敏;丁静;崔秀玉;陈军;;蜜蜂毒肽激活背根节伤害性感受神经元[A];Proceedings of the 8th Biennial Conference of the Chinese Society for Neuroscience[C];2009年
6 徐济良;俞宗跃;杨毓麟;;蜂毒肽对血管平滑肌的作用[A];面向21世纪的科技进步与社会经济发展(下册)[C];1999年
7 李开诚;陈军;;蜜蜂毒肽通过激活外周辣椒素受体诱致持续性自发痛和热痛敏[A];中国生理学会第六届全国青年生理学工作者学术会议论文摘要[C];2003年
8 陈亚宁;陈军;;皮下注射蜜蜂毒肽能成分对大鼠痛和炎症相关行为的影响[A];中国神经科学学会第六届学术会议暨学会成立十周年庆祝大会论文摘要汇编[C];2005年
9 于耀清;陈军;;神经源性成分对皮下注射蜜蜂毒肽诱发的局部炎症的贡献[A];中国神经科学学会第六届学术会议暨学会成立十周年庆祝大会论文摘要汇编[C];2005年
10 周漩;李占潮;戴宗;邹小勇;;基于DNA映射-小波变换预测蜂毒肽类似物的活性[A];《分析测试学报》2010年11月增刊2——第四届广东省分析化学研讨会论文集[C];2010年
相关重要报纸文章 前2条
1 刘道安;合成蜂毒肽抗“类风湿”[N];健康报;2005年
2 晓晖;蜂毒的现代药理研究与临床应用[N];中国医药报;2001年
相关博士学位论文 前4条
1 黄川;可系统性给药的蜂毒肽脂质纳米颗粒及其抗黑色素瘤作用研究[D];华中科技大学;2015年
2 李晶华;基于蜂毒肽的类风湿关节炎基因治疗研究[D];第四军医大学;2010年
3 杨文超;蜂毒肽和神蜂精抗HSV-1病毒作用及其机理研究[D];福建农林大学;2010年
4 陈亚宁;蜜蜂毒肽能成分的提纯及其生物学功能的鉴定[D];第四军医大学;2006年
相关硕士学位论文 前10条
1 王宏亮;蜂毒肽对玉米植生效应的研究[D];辽宁师范大学;2014年
2 潘凌子;蜂毒肽的抑菌作用及其基因表达研究[D];辽宁师范大学;2007年
3 朱文赫;意大利蜜蜂蜂毒肽基因克隆与表达研究[D];吉林大学;2008年
4 毛兵;高速逆流色谱法分离制备蜂毒肽[D];哈尔滨工业大学;2008年
5 邢卓;蜂毒肽毒杀作物病原菌机理和植生效应[D];辽宁师范大学;2005年
6 郝键;外周丝裂原活化蛋白激酶在蜜蜂毒肽诱致病理性痛中的作用[D];第四军医大学;2008年
7 杨文超;蜂毒肽的分离纯化及其抗辐射作用机理研究[D];福建农林大学;2007年
8 张丽娟;蜂毒肽分离纯化与体内外抗HSV-1病毒作用研究[D];福建农林大学;2010年
9 王建军;蜂毒肽抑制乳腺癌细胞MCF-7侵袭作用研究[D];东北师范大学;2014年
10 王洪娟;重组靶向毒素“去整合素_(ADAM15)-接头—蜂毒肽”的构建、表达与纯化[D];吉林大学;2010年
,本文编号:2487008
本文链接:https://www.wllwen.com/yixuelunwen/yiyaoxuelunwen/2487008.html