当前位置:主页 > 医学论文 > 预防医学论文 >

饮用水源地水华人体健康风险评价

发布时间:2018-05-07 16:11

  本文选题:饮用水源 + 水华 ; 参考:《华东师范大学》2012年博士论文


【摘要】:饮用水源地的水华事件已成为威胁饮用水源安全和暴露人体健康的环境污染问题。合理地评价水华具有的人体健康风险,是开展饮用水源地水华应急管理的基础。开展饮用水源地水华健康风险评价,需要以保护人体健康为目的,以水华水体急性暴露的健康风险大小为研究对象,采用污染物健康风险评价模型,评价水华污染水体具有的人体健康风险大小 饮用水源地水华的危害识别结果表明,饮用水源地受水华污染时,水体中主要污染物为MCs和DBPs。MCs作为一类肝毒素,主要作用于人体的肝细胞和肝巨噬细胞,最终导致人体患肝病。DBPs主要表现为致癌性和生殖毒性。采用水体中污染物急性暴露安全阈值(浓度)的计算方法,确定了MCs和DBPs的急性暴露安全阈值(浓度)。MC-LR、三氯甲烷、一溴二氯甲烷、三溴甲烷、二氯乙酸、三氯乙酸经饮用水暴露的急性暴露安全(阈值)浓度,分别为0.004、18、0.25、0.2、2、0.13、0.5mg/L。 氯化过程中MC-LR和DBPs污染特征的结果表明,原水氯化后水体中MC-LR浓度范围为0.11-3.89μg/L。不同水质指标与氯化后水体巾MC-LR的线性相关性结果表明:MC-LR浓度与水体Chl-a、TP和NH3-N呈线性正相关,线性相关系数分别为0.85、0.75和0.81。MC-LR浓度与N/P成线性负相关性,R2=0.73。原水中不同有机质组分的树脂分离结果表明:原水中溶解性有机质以疏水酸性物质为主。氯化后水体检出的主要DBPs为:三氯甲烷、一溴二氯甲烷、二溴一氯甲烷、三溴甲烷、一氯乙酸、二氯乙酸和三氯乙酸,其生成量的范围分别为:1.85-52.5、1.31-183、1.32-194、0.19-15.8、0.22-118、0.15-85.3和1.05-28.4μg/L。原水水质指标与DBPs生成量之间的线性相关性表明:HAAs与水体Chl-a浓度相关性最高(R2=0.75),与DOC浓度、NH3-N及1n(藻密度)的相关性次之,与TN和TP的相关性较差。THMs的生成量与水体中DOC浓度相关性最高(R2=0.87),与水体N/P的相关性最差(R2=0.27)。 按照污染物暴露量计算模型,确定了不同人群的日均暴露量。当水体Chl-a浓度范围为21.40-195.6μg/L时,成人对MC-LR、THMs、HAAs的日均暴露剂量分别为:3.14×10-6~1.11×10-4、2.04×10-4~1.17×10-2、7.94×10-5~3.81×10-3μg/kg·day;儿童对MC-LR、THMs、HAAs的日均暴露剂量分别为:1.10×10-5~3.89×10-4、7.15×10-4~4.44×10-2、2.78×10-4~1.33×10-2μg/kg·day。采用污染物急性健康风险表征方法,表征了不同水华污染水体的健康风险,结果表明:当水体中Chl-a浓度范围属于21.4-195.6μg/L时,水华非致癌风险值随Chl-a浓度的增加,呈逐渐上升的趋势,健康风险值介于0.17-4.39之间。水华致癌风险级别介于1.26×10-5-9.25×10-4/a之间。界定了3个不同的水华健康风险级别,当水体中Chl-a浓度低于80μg/L时,为无风险级;介于80-120μg/L时,为低风险级;高于120μg/L时,为高风险级。 饮用水源地水华健康风险评价不仅采用健康风险评价的手段,指导饮用水源地管理的一个新尝试,也是污染物急性人体健康风险评价的初步探索,具有一定的理论创新性和应用价值。
[Abstract]:The event of water bloom in the drinking water source has become an environmental pollution problem that threatens the safety of drinking water sources and exposes human health. It is the basis for the emergency management of water bloom in drinking water sources. The health risk assessment of water bloom in drinking water sources should be carried out to protect human health and to water bloom. The health risk of acute exposure to water is the research object, and the health risk assessment model of pollutants is used to evaluate the health risk of the water polluted water body.
The damage identification results of water bloom in drinking water source indicate that the main pollutants in the water body are MCs and DBPs.MCs as a kind of liver toxin, which mainly act on human liver cells and liver macrophages in the drinking water source area, which ultimately leads to the carcinogenicity and reproductive toxicity of the human liver disease.DBPs. The calculation of the safety threshold (concentration) of sexual exposure determined the acute exposure safety threshold (concentration) of MCs and DBPs, trichloromethane, one bromine dichloromethane, three bromomethane, two chloroacetic acid, and three chloroacetic acid exposed to drinking water for acute exposure safety (threshold) concentration, respectively 0.004,18,0.25,0.2,2,0.13,0.5mg/L.
The results of MC-LR and DBPs pollution in the process of chlorination show that the range of MC-LR concentration in the water after chlorination of the original water is the linear correlation between the different water quality indexes of 0.11-3.89 mu g/L. and the MC-LR of the water towel after the chlorination shows that the concentration of MC-LR is linearly and positively correlated with Chl-a, TP and NH3-N in water body, and the linear correlation coefficient is 0.85,0.75 and 0.81.MC-LR concentration, respectively. The result of the linear negative correlation with N/P is that the resin separation results of different organic matter in the R2=0.73. water show that the dissolved organic matter in the original water is mainly hydrophobic acid. The main DBPs in the water body after chlorination is trichloromethane, mono bromo dichloromethane, dichloromethane, three bromo methane, chloroacetic acid, two chloroacetic acid and three chloroacetic acid. The linear correlation between the water quality index of 1.85-52.5,1.31-183,1.32-194,0.19-15.8,0.22-118,0.15-85.3 and 1.05-28.4 mu g/L. and the yield of DBPs showed that the correlation between HAAs and the concentration of Chl-a in water body was the highest (R2=0.75), the correlation with DOC concentration, NH3-N and 1n (algae density), and the correlation with TN and TP. The correlation between the amount of poor.THMs and the concentration of DOC in water is the highest (R2=0.87), and the correlation with water N/P is the worst (R2=0.27).
According to the calculation model of pollutant exposure, the daily exposure of different population was determined. When the Chl-a concentration range was 21.40-195.6 g/L, the daily exposure dose of adult to MC-LR, THMs and HAAs were 3.14 x 10-6 ~ 1.11 x 10-4,2.04 x 10-4 ~ 1.17 x 10-2,7.94 * 10-5 ~ 3.81 * 10-3 UU day. Exposure doses of 1.10 * 10-5 to 3.89 x 10-4,7.15 x 10-4 ~ 4.44 * 10-2,2.78 x 10-4 ~ 1.33 * 10-2 mu g/kg. Day. were used to characterize the health risk of pollutants in different water blooms. The results showed that the non carcinogenic risk value of water bloom was with C when the concentration range of Chl-a was 21.4-195.6 Mu g/L. The HL-A concentration increased gradually, and the health risk value was between 0.17-4.39. The carcinogenic risk level of water bloom was between 1.26 x 10-5-9.25 x 10-4/a. 3 different health risk levels of water bloom were defined. When the concentration of Chl-a in water was less than 80 u g/L, it was a risk class; at 80-120 Mu g/L, it was a low risk grade; it was higher than 120 mu g/. At the time of L, it is a high risk level.
The health risk assessment of water bloom in drinking water source not only adopts the means of health risk assessment, but also provides a new attempt to guide the management of drinking water sources, and is also a preliminary exploration of the assessment of the risk of acute human health. It has a certain theoretical innovation and application value.

【学位授予单位】:华东师范大学
【学位级别】:博士
【学位授予年份】:2012
【分类号】:R123

【参考文献】

相关期刊论文 前10条

1 陈华,孙昌盛,胡志坚,汪家梨,王章敬;饮水微囊藻毒素在大鼠肝癌发生期间对细胞增殖与凋亡的影响[J];癌变.畸变.突变;2002年04期

2 鲁文清;刘爱林;;饮用水消毒副产物研究进展[J];癌变.畸变.突变;2007年03期

3 孙树青;胡国华;王勇泽;李诚;;湘江干流水环境健康风险评价[J];安全与环境学报;2006年02期

4 刘聚涛;杨永生;高俊峰;姜加虎;;太湖蓝藻水华分级及其时空变化[J];长江流域资源与环境;2011年02期

5 王立宁;方晶云;马军;陈忠林;;化学预氧化对藻类细胞结构的影响及其强化混凝除藻[J];东南大学学报(自然科学版);2005年S1期

6 秦伯强;王小冬;汤祥明;冯胜;张运林;;太湖富营养化与蓝藻水华引起的饮用水危机——原因与对策[J];地球科学进展;2007年09期

7 黄奕龙;王仰麟;谭启宇;杨磊;刘珍环;;城市饮用水源地水环境健康风险评价及风险管理[J];地学前缘;2006年03期

8 殷福才,张之源;巢湖富营养化研究进展[J];湖泊科学;2003年04期

9 田裘学;健康风险评价的基本内容与方法[J];甘肃环境研究与监测;1997年04期

10 王永杰,贾东红,孟庆宝,束富荣;健康风险评价中的不确定性分析[J];环境工程;2003年06期

相关博士学位论文 前7条

1 朱光灿;饮用水中微囊藻毒素降解机理与去除技术研究[D];河海大学;2004年

2 伍海辉;预氯化消毒副产物生成特性和去除机理研究[D];同济大学;2006年

3 冯小刚;环境中微囊藻毒素的检测、提纯及其紫外光助催化降解的研究[D];东南大学;2006年

4 李丽娜;上海市多介质环境中持久性毒害污染物的健康风险评价[D];华东师范大学;2007年

5 侯翠荣;高藻高有机污染水源水处理技术研究[D];山东大学;2008年

6 左金龙;饮用水处理技术现状评价及技术集成研究[D];哈尔滨工业大学;2007年

7 唐承佳;太湖贡湖湾水源地微囊藻毒素和含硫衍生污染物研究[D];华东师范大学;2010年

相关硕士学位论文 前2条

1 孙伟华;蓝藻暴发期水源水污染特征及饮用水安全保障技术研究[D];上海师范大学;2009年

2 王伟琴;饮用水源水中微囊藻毒素的遗传毒性与健康风险评价[D];浙江大学;2010年



本文编号:1857582

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/yufangyixuelunwen/1857582.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户47036***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com