当前位置:主页 > 管理论文 > 客户关系论文 >

正、负关联规则在CRM中的营销渠道选择的应用

发布时间:2018-05-03 10:06

  本文选题:负相关关联规则 + 正相关关联规则 ; 参考:《东北财经大学》2013年硕士论文


【摘要】:进入信息时代的今天,计算机技术、互联网技术的发展日新月异。这样的发展影响着各行各业,也渗透到人们生活中的各个方面。对于各个行业而言,伴随着计算机、网络科学技术如此的发展与更新,以及消费者在消费交易中的主导地位的不断加强,如何充分利用现代科学技术,成功地以最小的投入留住老客户,同时开发新客户,已然成为了各大商家关注的焦点。如何充分利用有效的营销方式宣传企业,使得企业在本行业中占有一定的地位,以及如何让企业了解自己的消费者、成功转化潜在消费者为企业的真实客户、赢得消费者的口碑、使客户对企业的产品和服务产生信赖感和依赖感,是各个企业在不断探索和前进的方向。 自1997年客户关系管理(CRM)这一概念被提出以来,人们将其应用从最初应用的、资金雄厚的金融行业和电信行业,延伸至各行各业中。其中,数据挖掘技术中的关联规则挖掘技术,在客户关系管理中的应用尤为广泛。提到关联规则挖掘技术在客户关系管理中的应用,学者们均将目光集中于挖掘正相关关联规则,即通过研究、分析事务之间存在的正相关关系,挖掘何种事务经常性的同时出现,且彼此影响。通过这样的数据挖掘结果,以及对其结果的分析,以便可以指导企业相关决策的制定,以此提高现有消费者的满意度和忠诚度,同时开发新客户。但是通过正相关关联规则我们得到的结论,是无法挖掘事务之间的负相关性,即哪两种事务很少同时出现,哪种事务对另一种事务的影响是向其相反方向的,这样的问题无法回答。此时,就需要通过挖掘事务之间的负相关关联规则来解释这种现象。 本文的研究重点是将视角转化,将正、负关联规则技术应用于挖掘企业的营销渠道与最终潜在客户成功转化为企业真实客户的研究。首先通过对关联规则算法中最为经典算法的Apriori算法进行分析研究,在Apriori算法的基础之上、支持度-置信度的框架之下,给出了负相关关联规则的算法与求法;然后通过对客户关系管理的相关问题的详尽论述,总结了数据挖掘技术在客户关系管理中的应用;最后以一个具体的应用实例,以及通过个人实践所获得的可靠数据,利用SPSS Clementine统计分析软件运行求解,对该结果进行分析,说明结合正相关关联规则与负相关关联规则得到的结论,比仅仅依靠正相关关联规则得到的结论全面,同时对商家决策制定提出指导意见。 企业在进行营销产品的时候,有很多营销宣传手段可以选择,而且这些手段大多是相结合的、同时进行的。但是盲目地选择已有的营销宣传手段就真的可以使企业的潜在客户成为真实客户么?每种营销宣传手段都能获得预想的宣传效果么?结果不然。消费者由于对信息的获取渠道不同,通过不同渠道所传达的信息,消费者的接受程度有所不同,使得有些营销宣传手段可以达到理想的效果,而其他一些差强人意。然而每种营销渠道,都需要企业人力、财力的投入,减少转化效率低的营销渠道,加大转化效率高的营销渠道,更有利于企业节省成本。所以,我们应该了解消费者的喜好,以便企业可以在营销的过程中投其所好、知其所想,让消费者在消费的整个过程,都可以获得良好的服务、体会到商家的贴心。从消费者的角度出发,使服务渗透到整个消费过程,从而提高消费者对企业的满意度,以及对企业产品和服务的忠诚度。最终提高企业的口碑,使企业实现以最小的营销投入、最小的维系客户投入,获得最大的经济效益的目的。
[Abstract]:Today, the development of the information age, the development of computer technology and Internet technology is changing rapidly. This development affects all walks of life and permeates all aspects of people's life. For every industry, with computers, network science and technology are so developed and new, as well as the dominant position of consumers in the consumer trade. Constantly strengthening, how to make full use of modern science and technology, to retain the old customers with the minimum investment and to develop new customers has become the focus of the big businesses. How to make full use of effective marketing methods to publicize the enterprise, make the enterprise occupy a certain position in this industry, and how to let the enterprise understand its own elimination. The successful conversion of potential consumers to the real customers of the enterprise, winning the reputation of the consumer, making the customer trust and dependence on the products and services of the enterprise, is the direction for the enterprises to explore and advance continuously.
Since the concept of customer relationship management (CRM) was put forward in 1997, people have extended its application from the initial application, the rich financial industry and the telecommunication industry to all walks of life. Among them, the association rules mining technology in data mining technology is widely used in the customer relationship management. The association rules mining technology is mentioned. In the application of customer relationship management, scholars have focused on mining positive correlation rules, that is, through research, the positive correlation between transactions is analyzed, and what kind of transaction recurs and affects each other. The results of such data mining and the analysis of the results can be used to guide the enterprise The decision is made to improve the satisfaction and loyalty of existing consumers and to develop new customers. But through the positive correlation rules we get the conclusion that it is impossible to excavate the negative correlation between the transaction, which is which two kinds of transactions rarely occur simultaneously, which kind of transaction affects the other transaction in the opposite direction. The problem can not be answered. At this point, we need to dig out the negative correlation rules between transactions to explain this phenomenon.
The focus of this paper is to transform the angle of view and apply the positive and negative association rules to the research of the marketing channel of the mining enterprise and the successful transformation of the final potential customers into the real customers of the enterprise. First, the Apriori algorithm of the most classical algorithm in the association rules algorithm is analyzed and the support degree is supported on the basis of the Apriori algorithm. Under the framework of confidence, the algorithm and method of negative correlation association rules are given, and then the application of data mining technology in customer relationship management is summarized through detailed discussion of the related problems of customer relationship management. Finally, a specific application example, and the reliable data obtained through personal practice, and the use of SPSS The Clementine statistical analysis software is solved, and the results are analyzed. It shows that the conclusion combined with the positive correlation association rules and the negative correlation rules is more comprehensive than the conclusion only depended on the positive correlation association rules. At the same time, it puts forward the guidance for the business decision making.
When enterprises carry out marketing products, there are many marketing methods that can be chosen, and most of these methods are combined and carried out at the same time. But the blind choice of existing marketing means can really make the potential customers of the enterprise become real customers? Every marketing propaganda means can get the expected publicity effect. The result is not. Consumers are different through different channels of information and different channels of information conveyed by different channels, and the acceptance of consumers is different, so that some marketing means can achieve the ideal effect, and others are poor. However, every marketing channel requires the investment of enterprise manpower and financial resources to reduce transformation. Low efficiency marketing channels and more efficient marketing channels are more conducive to enterprises to save costs. Therefore, we should understand the preferences of the consumers so that the enterprises can do well in the process of marketing and know what they want to get good service and appreciate the intimate business of the consumer in the whole process of consumption. The consumer's point of view makes the service permeate the whole consumption process, thus improving the satisfaction of the consumer to the enterprise, and the loyalty to the product and service of the enterprise. Finally, it improves the reputation of the enterprise, makes the enterprise realize the minimum marketing input, the minimum to maintain the customer's input, and obtain the maximum economic benefit.

【学位授予单位】:东北财经大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TP311.13

【参考文献】

相关期刊论文 前10条

1 郭跃斌;翟延富;董祥军;杨越越;李刚;;基于序列模式的正负关联规则研究[J];山东大学学报(理学版);2007年09期

2 郑斌;;关联规则的发展[J];吉林农业科技学院学报;2008年03期

3 黄名选;冯平;谢统义;;基于语词抽取与负关联规则挖掘的信息检索[J];计算机技术与发展;2012年05期

4 杨斌;董祥军;;基于负关联规则的Web使用挖掘技术及发展趋势[J];微型机与应用;2009年24期

5 严仍荣;;数值型关联规则挖掘在客户关系管理中的应用[J];皖西学院学报;2007年05期

6 张卫国;高贤强;武晓宏;;基于支持度-置信度框架的负关联规则研究[J];微电子学与计算机;2009年04期

7 黄名选;余如;;基于负关联规则与频繁项集挖掘的信息检索系统[J];现代图书情报技术;2011年Z1期

8 张新香;;关联规则挖掘在分析型CRM中的应用[J];计算机系统应用;2006年04期

9 朱玉全;杨鹤标;;负关联规则挖掘算法研究[J];应用科学学报;2006年04期

10 刘枚莲;刘同存;肖吉军;;基于双向关联规则的网络消费者偏好挖掘研究[J];微电子学与计算机;2013年03期



本文编号:1838068

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/kehuguanxiguanli/1838068.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户f7e19***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com