数据挖掘技术在分析型CRM中的应用研究
发布时间:2018-06-27 13:18
本文选题:数据挖掘 + 客户关系管理 ; 参考:《大连海事大学》2008年硕士论文
【摘要】: 数据挖掘技术在客户关系管理(CRM)中的应用作为近年来研究的热点问题,已引起学术界和企业界的广泛关注。CRM是将客户信息转化成为积极的客户关系的反复循环过程,企业通过建立与客户沟通的便利渠道,实施客户关怀,为客户创造更高的价值,来提高客户的满意度和忠诚度,从而实现更高的利润和企业的长远发展。数据挖掘则是从大量数据中发掘出有用知识的强有力工具,是实施客户关系管理的关键技术之一。企业在收集大量的客户基本资料和详细的交易数据的基础上,利用数据挖掘能够发现客户特征、客户购买模式等有价值的客户知识,可以有效地指导客户关系管理实践。 运营型CRM是以整合企业内部资源为主,而分析型CRM旨在增加CRM系统的商业分析与辅助决策能力,为企业提供有价值的决策知识。因此本文主要研究如何把数据挖掘技术应用到分析型CRM中去,,从而实现企业CRM系统中的分析决策功能。 本文首先对数据挖掘相关理论、CRM思想以及数据挖掘技术在CRM中的应用进行了介绍,并引入了RFM和客户价值矩阵理论。然后在运营型MBCRM系统的基础上设计构建分析型MBCRM系统。针对分析任务特点和企业需求,结合RFM和客户价值矩阵的内容,确定了客户购买行为分类、客户类别特征分析和客户营销分析三个主题的数据挖掘模式,提出了挖掘建模算法,设计了挖掘实施过程,然后通过程序编码得以实现,得出了许多启发性规则。最后阐述了本课题研究中的一些心得和今后的研究展望。
[Abstract]:The application of data mining technology in customer relationship management (CRM), as a hot research issue in recent years, has aroused the widespread concern of academic and business circles. CRM is an iterative process of transforming customer information into positive customer relationship. Through the establishment of convenient channels of communication with customers, the implementation of customer care, to create higher value for customers, to improve customer satisfaction and loyalty, so as to achieve higher profits and long-term development of the enterprise. Data mining is a powerful tool to extract useful knowledge from a large amount of data, and it is one of the key technologies to implement customer relationship management. On the basis of collecting a large number of customer basic information and detailed transaction data, enterprises can find valuable customer knowledge such as customer characteristics, customer purchase patterns and so on by using data mining, which can effectively guide the practice of customer relationship management. The operational CRM is to integrate the internal resources of the enterprise, while the analytical CRM aims to increase the ability of business analysis and auxiliary decision making of CRM system, and to provide valuable decision-making knowledge for the enterprise. Therefore, this paper mainly studies how to apply data mining technology to analytical CRM, so as to realize the function of analysis and decision in enterprise CRM system. Firstly, this paper introduces the CRM theory and the application of data mining technology in CRM, and introduces RFM and customer value matrix theory. Then, an analytical MBCRM system is designed and constructed on the basis of operational MBCRM system. According to the characteristics of the analysis task and the requirements of the enterprise, combined with the content of RFM and customer value matrix, this paper determines the data mining patterns of customer purchase behavior classification, customer class feature analysis and customer marketing analysis, and puts forward a mining modeling algorithm. The mining implementation process is designed, and then realized by program coding, and many enlightening rules are obtained. In the end, some experiences and future research prospects of this research are described.
【学位授予单位】:大连海事大学
【学位级别】:硕士
【学位授予年份】:2008
【分类号】:TP311.13
【引证文献】
相关期刊论文 前1条
1 来羽;;基于分类算法的可视化技术研究[J];煤炭技术;2010年10期
相关硕士学位论文 前5条
1 闵锐;数据挖掘在CRM中的应用研究[D];长春工业大学;2010年
2 徐勇;分析型CRM中聚类算法的研究[D];兰州理工大学;2010年
3 刘中贺;件烟自动补货算法研究[D];北京邮电大学;2010年
4 赵裕啸;基于OLAM的分析型CRM及其在证券业的应用研究[D];合肥工业大学;2010年
5 刘建兰;数据挖掘技术在客户关系管理中的应用研究[D];南昌大学;2010年
本文编号:2074041
本文链接:https://www.wllwen.com/guanlilunwen/kehuguanxiguanli/2074041.html