当前位置:主页 > 管理论文 > 品牌论文 >

基于卷烟常规化学检测数据及近红外信息的卷烟牌号识别

发布时间:2018-09-04 09:37
【摘要】:本文以不同牌号卷烟的近红外光谱和常规理化化学检测指标数据为基础,提出了基于逆序法的近红外数据稳定性检验和基于信息增益的特征抽提方法。分别以卷烟的9个常规检测化学指标、基于经验选择的6个常规化学特征、近红外光谱的主成分得分及5个抽提的主成分、12个抽提的近红外光谱与化学指标的综合指标为卷烟牌号分类特征,采用(改进)与简化的KNN模式识别方法建立了一系列卷烟牌号判别模型。以272个取自6个不同牌号的卷烟为样本,对每个判别模型均随机选取4组检验集,采用4组检验集的平均预测正确率考察模型的预测性能。根据模型的结果确定影响成品卷烟品牌风格的重要特征,为卷烟品牌维护、配方设计与维护提供理论依据与指导。 结果表明无论是对两个牌号卷烟的两类分类还是对三个牌号卷烟的三类分类及六个牌号卷烟的六类分类问题,以前16个近红外光谱主成分及12个抽提的综合特征为分类特征所建立的判别模型均可给出92.65%~98.86%的平均预测正确率;9个化学指标与6个常规化学指标为分类特征时,判别模型对两个牌号及三个牌号卷烟的平均预测正确率也能达到95%以上,对6个牌号卷烟的平均预测正确率为83.09%~84.56%。基于近红外光谱对卷烟牌号识别的准确率要高于基于常规化学的识别准确率,模式识别模型预测准确率随样本类别复杂程度提高而降低。 综上,近红外信息可以很好反映不同品牌卷烟的主要风格特征,根据近红外光谱可对卷烟牌号进行准确鉴别。提示可利用近红外信息进行成品卷烟品牌管理、叶组配方设计与维护。
[Abstract]:Based on the NIR spectra of different brands of cigarettes and the conventional physicochemical detection index data, this paper presents a method based on reverse sequence method for the stability test of NIR data and the feature extraction method based on information gain. According to the 9 routine chemical indexes of cigarette and the 6 conventional chemical characteristics based on experience, The principal component scores of NIR spectra and 5 principal components extracted from NIR spectra, and the comprehensive indexes of NIR spectra and chemical indexes of 12 extracted cigarettes were classified as cigarette grades. A series of cigarette brand discrimination models were established by using (improved) and simplified KNN pattern recognition method. Based on 272 cigarettes of 6 different grades, 4 groups of test sets were randomly selected for each discriminant model, and the prediction performance of the model was investigated with the average prediction accuracy of the four groups of test sets. According to the results of the model, the important characteristics affecting the brand style of finished cigarette are determined, which provides theoretical basis and guidance for cigarette brand maintenance, formula design and maintenance. The results show that the classification of two types of cigarettes, three categories of three brands and six categories of six kinds of cigarettes are not only related to the classification of two brands of cigarettes, but also to the classification of six types of cigarettes. The discriminant models based on 16 principal components of NIR spectra and 12 extracted principal components are classified features, and the average prediction accuracy is 92.65% or 98.86%, and when 9 chemical indexes and 6 conventional chemical indexes are classified characteristics, the average prediction accuracy is 92.65% or 98.86%, while 9 chemical indexes and 6 conventional chemical indexes are classified characteristics. The average prediction accuracy of the discriminant model for two brands and three grades of cigarettes was over 95%, and the average accuracy rate for six brands of cigarettes was 83.09 and 84.56. The accuracy rate of cigarette brand recognition based on near infrared spectrum is higher than that based on conventional chemistry, and the prediction accuracy of pattern recognition model decreases with the increase of sample class complexity. In conclusion, NIR information can well reflect the main style characteristics of different brands of cigarettes, according to NIR spectrum can accurately identify cigarette brands. It is suggested that brand management, leaf formulation design and maintenance can be carried out by using near infrared information.
【学位授予单位】:华东理工大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TS47

【参考文献】

相关期刊论文 前10条

1 倪力军;郭佳;张鑫;张立国;;卷烟主流烟气及其物理化学检测数据的挖掘与信息抽提[J];华东理工大学学报(自然科学版);2007年01期

2 倪力军;曾晓虹;张立国;;KNN-KSR建模方法及其在卷烟主流烟气预测中的应用[J];华东理工大学学报(自然科学版);2008年04期

3 钟珍珍;张立国;张鑫;顾欣;倪力军;;近红外技术识别掺假原奶的可行性研究[J];计算机与应用化学;2010年12期

4 祝元元;陈永宽;刘志华;刘春波;李聪;何严萍;;近红外光谱技术在烟草行业的应用进展[J];应用化工;2010年11期

5 刘罗曼;;时间序列平稳性检验[J];沈阳师范大学学报(自然科学版);2010年03期

6 倪克平,范铁桢,王涛;卷烟硬度、吸阻与单支重相关性分析[J];烟草科技;2002年03期

7 王家俊,罗丽萍,李辉,杨勇;FT-NIR光谱法同时测定烟草根、茎、叶中的氮、磷、氯和钾[J];烟草科技;2004年12期

8 王国东;束茹欣;张建平;倪力军;;不同产地国产烤烟近红外光谱的特征分析及其模式识别[J];烟草科技;2006年05期

9 束茹欣;王国东;张建平;倪力军;;国产烤烟烟叶的NIRS模式识别[J];烟草科技;2006年08期

10 刘晓萍;李斌;于川芳;申玉军;王兵;;基于近红外光谱的卷烟配方结构识别[J];烟草科技;2006年10期



本文编号:2221701

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/pinpaiwenhualunwen/2221701.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户5facf***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com