大规模风电厂的动态经济调度及其风险管理
本文选题:风电厂 切入点:动态经济调度 出处:《南京大学》2013年硕士论文
【摘要】:由于风的间歇性和随机性,大规模风电厂内部的调度规划面临着一些困境。风电厂的调度规划的根本目的是在满足电网需求的同时,尽可能地最小化风电厂运营的总成本,并且保证电网的运行安全。本研究针对这个问题提出了一个动态经济调度模型和相应的解决方法。此次研究的目标函数是风电厂的运营总成本,其中包括电力短缺成本、风机运维成本和风机启动成本。为了求解文中提出的调度规划模型,本文应用了PSSWO算法,这是一种将传统的粒子群优化(PSO)算法与小世界网络结构相结合的强化算法。此外,本文还引入了一种沟通机制来进行半封闭群落之间的信息交换,以达到探索和利用之间的平衡。 之后,本研究设计了两个仿真实验来验证和分析由模型产生的优化调度规划方案。为了评估优化方案的效果,设定了一个基准规划方案,用总成本收益比来说明经过优化后的方案优于基准规划方案的程度。实验结果表明,通过模型计算得到的优化调度规划方案的表现要优于基准规划方案。通过分析优化后的规划方案,可以看出,并不是所有高功率的风机都一直处于运行状态就能满足风电厂运营的要求,这是因为总成本的三个组成部分之间存在着一种微妙的平衡,必须对风机的启停有所判断,才能达到总成本最小化的目的。 最后,本文根据澳大利亚—新西兰风险管理标准AS/NZS4360提出的标准过程,从风险的识别、分析、评估、控制、监控和反馈等方面提出了一系列管理策略和措施,为未来的风电厂调度规划和风险管理提供有益的启示。
[Abstract]:Due to the intermittent and randomness of wind, the internal scheduling planning of large-scale wind power plants faces some difficulties. The fundamental purpose of the scheduling planning of wind power plants is to minimize the total operating cost of wind power plants while satisfying the demand of the power network. In order to solve this problem, a dynamic economic dispatching model and corresponding solutions are proposed. The objective function of this study is the total operating cost of wind power plant, including the cost of power shortage. In order to solve the scheduling planning model proposed in this paper, the PSSWO algorithm is applied, which combines the traditional particle swarm optimization (PSO) algorithm with the small-world network structure. This paper also introduces a communication mechanism to exchange information between semi-closed communities in order to achieve a balance between exploration and utilization. Then, two simulation experiments are designed to verify and analyze the optimal scheduling scheme generated by the model. In order to evaluate the effect of the optimization scheme, a benchmark planning scheme is set up. The degree to which the optimized scheme is superior to the baseline planning scheme is illustrated by the total cost-benefit ratio. The experimental results show that, The performance of the optimal scheduling plan obtained by the model calculation is better than that of the benchmark planning scheme. Through the analysis of the optimized planning scheme, it can be seen that, Not all high-power fans can meet the operational requirements of wind power plants if they are always in operation. This is because there is a delicate balance between the three components of the total cost, and it is necessary to judge the starting and stopping of the fans. In order to achieve the goal of minimizing the total cost. Finally, according to the standard process proposed by Australia New Zealand risk Management Standard (AS/NZS4360), this paper puts forward a series of management strategies and measures from the aspects of risk identification, analysis, evaluation, control, monitoring and feedback. For the future wind power plant scheduling planning and risk management to provide useful inspiration.
【学位授予单位】:南京大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:F272.3;F426.61
【参考文献】
相关期刊论文 前10条
1 刘敏,吴复立;电力市场环境下发电公司风险管理框架[J];电力系统自动化;2004年13期
2 陈海焱;陈金富;段献忠;;含风电场电力系统经济调度的模糊建模及优化算法[J];电力系统自动化;2006年02期
3 杨明;韩学山;梁军;张利;;基于等响应风险约束的动态经济调度[J];电力系统自动化;2009年01期
4 赵珊珊;张东霞;印永华;申洪;;风电的电价政策及风险管理策略[J];电网技术;2011年05期
5 刘韬文;李孝杰;;考虑风力发电的电力系统经济调度[J];继电器;2007年S1期
6 夏澍;周明;李庚银;;含大规模风电场的电力系统动态经济调度[J];电力系统保护与控制;2011年13期
7 任博强;蒋传文;彭鸣鸿;栾士岩;林海涛;靳希;;基于改进遗传算法的含风电场的电力系统短期经济调度及其风险管理[J];现代电力;2010年01期
8 孙元章;吴俊;李国杰;何剑;;基于风速预测和随机规划的含风电场电力系统动态经济调度[J];中国电机工程学报;2009年04期
9 邱威;张建华;刘念;;含大型风电场的环境经济调度模型与解法[J];中国电机工程学报;2011年19期
10 ;风电并网调度管理——烟台供电公司基于流程的风电调度风险管理体系[J];中国电力企业管理;2010年25期
相关硕士学位论文 前1条
1 张炜明;风力发电背景下甘肃电网调度策略研究[D];兰州大学;2011年
,本文编号:1672691
本文链接:https://www.wllwen.com/guanlilunwen/shengchanguanlilunwen/1672691.html