基于聚类分析的电子商务客户细分系统的设计与实现
发布时间:2017-03-21 22:02
本文关键词:基于聚类分析的电子商务客户细分系统的设计与实现,由笔耕文化传播整理发布。
【摘要】:随着网络的不断普及,企业想要在电商领域占有一定份额,客户资源是其获得胜利的核心因素,故企业的销售模式逐渐以产品为中心转向以客户为中心的模式。对于不断增加且呈现多样化趋势的消费数据,传统的基于一维属性的统计学方法的客户细分方式已逐渐显露其弊端,取而代之的是采用相适应的数据挖掘算法对量多且复杂的数据信息实现精准而高效的客户细分。该客户细分方式凭借对现有客户的保留和对潜在客户的挖掘,分析并预测出未来市场消费趋势,以达到企业最终差异化营销的目标。为了实现上述目标,本文采用数据挖掘中的聚类分析方式运用于某服装电子商务企业进行客户细分,具体采用改进的基于近邻传播算法的K-means算法来实现系统的设计与实现。文中详细介绍了新算法的改进过程、实现流程以及通过实验验证其算法改进后的有效优势,具体表现在对数据集中的噪声点进行有效排除,并获取较为精准的初始聚类中心,同时极大的提升了聚类的准确率和各聚类之间的紧密度,实现了更令人满意的聚类效果。本论文的研究工作和成果如下:1、介绍了客户细分的相关理论,包含其概念,研究背景以及实现意义,并详细分析了客户细分中所使用的一般方法及相应步骤,通过对客户细分方法的详细探究,描述了电商领域中的该项技术的特征及不断完善的过程。2、介绍了客户细分所应用的数据挖掘技术的概念、功能以及常用的方法,并对其中的聚类分析算法的相关原理及主要的聚类方法进行了系统的概述。3、详细介绍了经典的K-means算法及通过引入AP算法,并对其中的K-means算法的聚类准则函数和AP算法的相似性度量进行了相应的改进,以便于实现对K-means算法的聚类个数和聚类中心的有效初始化,以及聚类收敛条件精确度的提升,最终生成改进的基于近邻传播算法的K-means算法,将其应用于实验验证,与前者算法进行对比,得出了能实现更佳聚类结果的结论。4、进行电子商务网站客户细分系统的设计,叙述了电子商务网站客户细分系统的整体模型,详细分析了电子商务网站客户的需求分析,包含其特点及相应的系统目标,具体阐述了数据预处理模块和数据挖掘过程模块的设计流程。5、完成了电子商务网站客户细分系统的实现,将改进的基于近邻传播算法的K-means算法应用于某服装电子商务企业中进行分析,详细描述了该算法的实现过程以及性能分析,并对细分结果加以分析,提出可行的营销策略。
【关键词】:数据挖掘 聚类算法 K-means算法 客户细分
【学位授予单位】:江苏科技大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP311.13
【目录】:
- 摘要4-5
- Abstract5-11
- 第1章 绪论11-17
- 1.1 研究背景及意义11-13
- 1.2 研究现状13-15
- 1.3 论文结构安排15-16
- 1.3.1 本文主要内容15
- 1.3.2 本文组织结构15-16
- 1.4 小结16-17
- 第2章 客户细分的相关理论17-29
- 2.1 客户细分概述17-21
- 2.1.1 客户细分的内涵17-18
- 2.1.2 客户细分的意义18-19
- 2.1.3 客户细分的一般方法19-21
- 2.2 传统客户细分特点21-22
- 2.3 电子商务环境下客户细分的变化和新特点22-23
- 2.4 客户细分技术研究23-26
- 2.5 客户细分的基本流程26-28
- 2.6 小结28-29
- 第3章 数据挖掘中的聚类分析理论概述29-35
- 3.1 数据挖掘的理论29-30
- 3.1.1 数据挖掘的概念29-30
- 3.1.2 数据挖掘的功能30
- 3.2 聚类分析算法的理论30-34
- 3.2.1 聚类概念及原理30-31
- 3.2.2 聚类分析的相似性度量方法31-32
- 3.2.3 聚类分析方法32-34
- 3.3 小结34-35
- 第4章K-means算法及其改进35-45
- 4.1 K-means算法35-39
- 4.1.1 K-means算法原理概述35-37
- 4.1.2 K-means算法的缺点及现有改进方法37-38
- 4.1.3 本文给出的K-means算法改进方法38-39
- 4.2 AP算法39-41
- 4.2.1 AP算法原理概述39-40
- 4.2.2 AP算法步骤40-41
- 4.3 改进AP+K-means混合算法研究41-44
- 4.4 算法的实验验证44
- 4.5 小结44-45
- 第5章 电子商务客户细分系统的设计45-53
- 5.1 电子商务客户细分的总体模型设计45-47
- 5.2 电子商务客户细分需求分析47-48
- 5.2.1 电子商务客户的特点47
- 5.2.2 电子商务客户系统目标47-48
- 5.3 数据预处理模块设计48-50
- 5.4 聚类分析模块设计50-51
- 5.5 小结51-53
- 第6章 电子商务客户细分系统设计实现及功能测试53-61
- 6.1 数据采集53-56
- 6.2 数据预处理56-57
- 6.2.1 数据清洗56
- 6.2.2 数据转换和数据集成56-57
- 6.3 改进AP+K-means算法进行电子商务客户细分57-58
- 6.4 客户细分结果分析58-59
- 6.5 电子商务客户细分系统的功能测试59-60
- 6.6 小结60-61
- 第7章 总结与展望61-63
- 7.1 全文总结61-62
- 7.2 展望62-63
- 参考文献63-67
- 攻读硕士期间发表的学术论文67-69
- 致谢69
本文关键词:基于聚类分析的电子商务客户细分系统的设计与实现,由笔耕文化传播整理发布。
,本文编号:260349
本文链接:https://www.wllwen.com/guanlilunwen/yingxiaoguanlilunwen/260349.html