当前位置:主页 > 教育论文 > 初中教育论文 >

高中生在“几何证明”问题解决中的元认知能力研究

发布时间:2018-03-30 10:18

  本文选题:元认知 切入点:问题解决 出处:《南京师范大学》2015年硕士论文


【摘要】:元认知被称为“关于认知的认知”,它是关于个体对自身认知过程的知识与调节,关于元认知的研究已经成为当今研究的一个热点。本文在元认知理论的指导下,采用文献综述法、问卷调查法、访谈法等方法进行研究,通过借鉴国内外已有的理论和经验,试图从数学学科的特点出发,结合“几何证明题”问题解决的思维过程,对高中生在证明几何问题时的元认知能力进行调查与分析,了解当前高中生的元认知能力的现状,以此唤醒人们的重视,并据此提出培养学生元认知能力的一些策略,希望为数学教学提供参考依据。本文总共分为三大部分。第一部分对国内外已有的研究理论和经验进行分析和总结,从中找出本文的研究内容,提出本文的研究意义,并对相关的概念进行界定。第二部分,编制测试题和问卷,对高中生在证明几何问题时的元认知能力进行调查,利用SPSS软件对调查所得的数据进行分析。同时,为提高调查结果的可信度和可靠度,选取不同层次的学生进行访谈,并对访谈结果进行分析。第三部分,综合对上述调查数据与访谈结果的分析,得出相应的结论,并在此基础上提出培养学生元认知能力的一些策略。通过问卷调查和访谈分析,得到以下结论:1.元认知能力的高低对学生问题解决的效率有重要影响;2.元认知结构中的管理和调节方面对学生解题成绩的影响最大;3.高中生在“几何证明题”问题解决中的元认知能力较低;4.高中生缺乏必要和足够的元认知知识;5.高中生缺乏较高的元认知体验,解题时容易受到干扰因素的影响;6.高中生的元认知监控水平较低,不能高效率地选择、调整解题策略。
[Abstract]:Metacognition is called "cognition about cognition". It is about the individual's knowledge and regulation of its own cognitive process. The research on metacognition has become a hot topic in the present research. Under the guidance of metacognitive theory, this paper is based on the theory of metacognition. This paper adopts the methods of literature review, questionnaire investigation, interview and so on. By using the existing theories and experiences at home and abroad for reference, this paper tries to combine the thinking process of solving the problem of "geometric proof problem" from the characteristics of mathematics. This paper investigates and analyzes the metacognitive ability of senior high school students in order to find out the present situation of metacognitive ability of senior high school students, so as to arouse people's attention, and then puts forward some strategies to cultivate students' metacognitive ability. This paper is divided into three parts. The first part analyzes and summarizes the existing research theories and experiences at home and abroad, finds out the research contents of this paper, and puts forward the significance of the research. In the second part, we compile the test questions and questionnaires, investigate the metacognitive ability of high school students to prove geometric problems, and use SPSS software to analyze the data. In order to improve the reliability and reliability of the survey results, different levels of students are selected to interview, and the results of the interviews are analyzed. On this basis, some strategies to cultivate students' metacognitive ability are put forward. Conclusion: 1.The level of metacognitive ability has an important influence on students' problem-solving efficiency 2.The management and adjustment of metacognitive structure have the greatest influence on students' problem solving scores 3.High school students'"geometric proof" question. Lack of necessary and sufficient metacognitive knowledge in senior high school students lack of high school students' higher metacognitive experience. The high school students' metacognitive monitoring level is low, and they can't choose and adjust the problem solving strategies efficiently.
【学位授予单位】:南京师范大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:G633.6

【参考文献】

相关期刊论文 前5条

1 农江萍,姚源果;数学问题解决研究述评[J];广西民族学院学报(自然科学版);2002年02期

2 聂爱情,许晓晴;元认知及元认知培养对教学的启示[J];教育理论与实践;2001年11期

3 李玉琪;论数学元认知与问题解决能力的关系[J];山东师大学报(自然科学版);1995年02期

4 涂荣豹;数学解题学习中的元认知[J];数学教育学报;2002年04期

5 王家聪;数学元认知水平调查问卷的设计[J];中学数学教学参考;2003年04期



本文编号:1685490

资料下载
论文发表

本文链接:https://www.wllwen.com/jiaoyulunwen/chuzhongjiaoyu/1685490.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户339ad***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com