云计算下基于认知的学习质量评价优化算法的研究
[Abstract]:The topic of this paper comes from the project of Humanities and Social Sciences of Liaoning Provincial Education Department, "Evaluation and Optimization Model of College Teaching based on Cognitive Model in Mobile Cloud Computing Environment". The starting point of the research is to establish an effective evaluation model of assistant teaching effect in cloud computing environment. This paper mainly studies the problems of learning quality evaluation. Based on the workflow of the evaluation system, the platform is divided into four modules: data acquisition module, data storage module, data analysis module and data query module. Data collection module through the data storage module for the subsequent data analysis module to do data preparation after the data analysis the user can query the user's prediction results through the data query module. The most important one is the data analysis module, in which the prediction effect is better by improving the algorithm. This research is mainly divided into two aspects: on the one hand, the selection of questionnaire items, on the other hand, the optimization of regression prediction algorithm. On the basis of cognitive learning theory and the internationally recognized Learning motivation Strategy questionnaire (MSLQ), a cognitive learning quality evaluation questionnaire was compiled. It is revised by the book Evaluation of Learning quality: SOLO Classification Theory (observable structure of Learning results). SPSS was used to test the validity and reliability of the data obtained in the first round of the survey. The inapplicable items were eliminated and the items that had a great impact on the learning quality were retained. After the internal consistency test from the previous 0.926 to 0. 930. It shows that the reliability of the questionnaire is high and can be used as the basis of cognitive learning quality evaluation. The data used for regression forecasting are recovered through the re-distribution of questionnaires. In the cloud computing platform, Python language is used to program the corresponding algorithm to predict the numerical data. Regression prediction will be faced with two problems, one is under-fitting, the other is expansion bottleneck. In this study, multiple independent variables are used to predict dependent variables, so multivariate linear regression algorithm is first used to predict dependent variables. The purpose of regression prediction is to get better prediction effect. Because the regression model determined by multivariate linear regression algorithm is to satisfy the laws of all samples, the outliers are often taken into account in the model. The resulting model will be underfitted. In order to improve the prediction effect, the local weighted linear regression algorithm is used to improve the accuracy of prediction. With the deepening of the research, the amount of data will continue to surge, and the problem of expansion bottleneck will occur in the analysis of the data, in order to improve the speed of the improved algorithm. The local weighted linear regression algorithm is parallelized to meet the operational requirements of the MapReduce programming model. Finally, the precision of the model is determined by analyzing the complex correlation coefficient R and the squared sum of the residuals. Users predict the learning quality through this evaluation system, which is convenient for users to make reasonable planning for the later learning in time.
【学位授予单位】:沈阳师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:G642.0;O213
【参考文献】
相关期刊论文 前10条
1 解峰;;运用元认知策略提高高职英语专业学生学业水平——基于语言学科平台的研究[J];山西青年职业学院学报;2016年02期
2 孙丽娜;杨殊;;学习质量评价中数据采集系统的设计与实现[J];软件导刊(教育技术);2016年02期
3 王新刚;孔云峰;;城市住房价格局部线性地理加权回归分析——以湖北省黄石市为例[J];中国土地科学;2015年03期
4 颜春宁;;局部优化加权回归算法在电力设备失效预测中的应用[J];计算机测量与控制;2014年01期
5 陈学军;黄利华;;基于云计算的义务教育学科课程资源共建共享模式[J];中国电化教育;2013年01期
6 张怀南;杨成;;我国云计算教育应用的研究综述[J];中国远程教育;2013年01期
7 赵子云;左明章;邓果;;基于云计算的教育信息公共服务平台的构建[J];现代教育技术;2012年12期
8 王丽娜;杨亭亭;刘仁坤;;国内外高等教育学习评价现状研究综述——兼论对国家开放大学学习评价体系建设的启示[J];现代远距离教育;2012年02期
9 包文婷;李三福;丁丽;;农村小学生学习动机、学习态度及其学习质量的实证研究[J];当代教育论坛(管理研究);2011年11期
10 张芝萍;曹燕华;郑栋;俞扬;;基于AHP应用的多元化、开放式高职学生学习质量评价体系研究[J];浙江师范大学学报(社会科学版);2011年06期
相关博士学位论文 前1条
1 王文婧;移动云计算的QoE评价与优化研究[D];北京邮电大学;2013年
相关硕士学位论文 前7条
1 万伟权;放疗中肿瘤运动基于实时跟踪呼吸预测的算法研究[D];南方医科大学;2015年
2 周章海;基于云计算理念的职业教育园区资源共享研究[D];大连海事大学;2014年
3 李志强;云计算教育服务平台模型分析和应用研究[D];广东技术师范学院;2013年
4 邓丽博;高中学生立体几何学习质量评价研究[D];湖南师范大学;2013年
5 杜玲玲;基于MapReduce的数据挖掘算法研究与应用[D];桂林电子科技大学;2012年
6 黄静;初中生数学学习兴趣、自我效能感、学业情绪与数学学业成绩的关系研究[D];四川师范大学;2012年
7 姜文;基于Hadoop平台的数据分析和应用[D];北京邮电大学;2011年
,本文编号:2269694
本文链接:https://www.wllwen.com/jiaoyulunwen/gaodengjiaoyulunwen/2269694.html