网络阅卷及其关键技术研究
[Abstract]:With the development of computer information technology, the application scale of network information technology in examination is more and more large. Examination is an important link in teaching. With the increase of the number of examinations and the expansion of examination scale, the traditional examination content limited multiple choice questions and questions gradually evolved into single topic selection, multi-topic selection, objective subjective selection of questions, subjective test questions. Divergent thinking questions and other questions as one of the diversified development situation, the traditional marking of the error of the paper evaluation, the statistical analysis of scores after marking, the transport and storage of test papers can not achieve accuracy. The network marking system is a new type of marking method which aims at improving the marking speed, reducing the error of the subjective questions marking, facilitating the statistical analysis of the scores and the management and archiving of the examination papers, and taking the principle of fairness and fairness in the examination as the purpose. In this paper, the design mode of "Internet", digital image processing technology and big data analysis technology are adopted, and the complicated marking work and the complicated data statistical analysis are automatically completed by the system "scan and review". The system is mainly divided into two parts: objective question marking and subjective question marking. After image scanning, the system automatically recognizes the basic information of the examinee, and the objective questions are automatically graded by the system. The subjective questions are distributed randomly to the computer terminal by the system, and the network marking is carried out by the marking teachers. The multiple evaluation mechanism is injected into the marking process to ensure the fairness of the marking, and the system automatically carries out the results statistics and verification. The combination of computer network technology and teachers' marking experience not only reduces the error of marking but also improves the efficiency of marking. The main work of this paper is as follows: (1) on the basis of reading related literature, this paper analyzes and compares the domestic and foreign research background and current situation, and analyzes the advantages and disadvantages of several domestic systems. This paper expounds the importance of developing a network marking system with high efficiency and strong function. According to the real needs of users, it combines the educational technology theory of network application in education. Analysis and design of the whole system development scheme; (2) analysis of the image preprocessing technology, aiming at several commonly used image preprocessing methods, find out the image preprocessing technology suitable for this system. The electronic scan answer card is preprocessed and the objective answer recognition is realized. Finally, the convolution neural network is applied to the field of handwritten answer and test number recognition, which realizes the automatic recognition of the objective answer and handwritten answer and the test number. The accuracy and efficiency of the system in recognition are improved effectively. (3) at last, the system adopts the B / S development mode, uses SSH framework Java technology and MySQL database, and finally develops and realizes the whole marking system.
【学位授予单位】:石家庄铁道大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:G434
【参考文献】
相关期刊论文 前10条
1 曾雪琼;黎杰;;基于卷积神经网络的时频图像识别研究[J];机械与电子;2016年05期
2 胡青;刘本永;;基于卷积神经网络分类的说话人识别算法[J];信息网络安全;2016年04期
3 阳哲;;卷积神经网络在印章编号识别中的应用[J];现代计算机(专业版);2016年04期
4 宋波;王启春;;卷积神经网络在路牌识别中的应用[J];公路交通技术;2015年05期
5 王振;高茂庭;;基于卷积神经网络的图像识别算法设计与实现[J];现代计算机(专业版);2015年20期
6 蔡娟;蔡坚勇;廖晓东;黄海涛;丁侨俊;;基于卷积神经网络的手势识别初探[J];计算机系统应用;2015年04期
7 余永维;殷国富;殷鹰;杜柳青;;基于深度学习网络的射线图像缺陷识别方法[J];仪器仪表学报;2014年09期
8 郑胤;陈权崎;章毓晋;;深度学习及其在目标和行为识别中的新进展[J];中国图象图形学报;2014年02期
9 徐虹;高伟;;美国大学考试形式及其对我国考试评价改革的启示[J];教育探索;2013年07期
10 徐姗姗;刘应安;徐f;;基于卷积神经网络的木材缺陷识别[J];山东大学学报(工学版);2013年02期
相关博士学位论文 前1条
1 郑泽忠;基于高分辨率航空影像高速公路汽车目标检测算法研究[D];西南交通大学;2010年
相关硕士学位论文 前8条
1 常欢;基于卷积神经网络的孤立手写体汉字识别研究[D];安徽大学;2015年
2 李敏;基于BS模式的网络阅卷系统的设计与实现[D];吉林大学;2014年
3 张爱娟;基于结构特征点的字符分割技术的研究[D];西安电子科技大学;2014年
4 陈寅;植物叶形状与叶脉结构的自动分类研究[D];浙江理工大学;2013年
5 谢琪林;网上阅卷系统设计与实现[D];电子科技大学;2011年
6 张智轶;基于图像处理的燃烧物识别技术的研究[D];东华大学;2011年
7 孙伟;基于FPGA的图像分割提取系统研究[D];南京航空航天大学;2010年
8 王添翼;基于卷积网络的三维模型特征提取[D];吉林大学;2006年
,本文编号:2265253
本文链接:https://www.wllwen.com/jiaoyulunwen/jiaoyutizhilunwen/2265253.html