当前位置:主页 > 教育论文 > 教育体制论文 >

网络阅卷及其关键技术研究

发布时间:2018-10-12 07:16
【摘要】:随着计算机信息技术的发展,网络信息化技术在考试中的应用规模也越来越宏大。考试是教学的重要环节,考试数量的增多和考试规模的扩大,传统考试内容限定的选择题和问答题逐渐演变为集单选题、多选题、客观主观选做题、主观性试题、发散性思维题等题型为一体的多元化发展态势,传统阅卷方式对评卷误差的把握、阅卷后的分数统计分析,试卷的运送存储等都无法做到精确。网络阅卷系统是以提高阅卷速度,减小主观题阅卷误差,便于分数的统计分析及试卷的管理存档为目的,以考试的公平公正性原则为宗旨的新型阅卷方式。本文采用“互联网+”的设计模式、数字图像处理技术以及大数据分析技术,将纷繁复杂的阅卷工作和错综复杂的数据统计分析交由系统的“扫描和评阅”自动完成。系统主要分客观题阅卷和主观题阅卷两大部分,试卷经过图像扫描,系统自动识别考生基本信息,客观题由系统自动判分,主观题由系统随机将分割后的题块分发到计算机终端,由阅卷教师进行网络阅卷,阅卷过程中注入多评机制,保证阅卷公平性,系统自动进行成绩统计和校验。网络阅卷将计算机网络技术与教师阅卷经验相结合,既减少了阅卷错误又相应地提高了阅卷效率。本文在网络阅卷整个系统的设计实现中,主要做了如下工作:(1)在阅读相关文献的基础上分析对比国内外研究背景和现状,重点分析国内几家系统的优缺点,阐述了迫切开发一款效率高、功能强的网络阅卷系统的重要性,针对用户真实需求,结合网络应用于教育的教育技术学理论,对整个系统的开发方案进行分析与设计;(2)分析了图像预处理的相关技术,针对几种常用的图像预处理方法,找出适应于本系统的图像预处理技术,对电子扫描答题卡作图像预处理操作,实现了客观题答案识别。最后将卷积神经网络应用到手写答案和考号识别领域,实现对涂卡客观题答案和手写体答案及考号的自动识别,有效地提高了系统在识别方面的准确率和效率。(3)最后本系统采用B/S开发模式,利用SSH框架Java技术和MySQL数据库,最终开发实现了整个阅卷系统。
[Abstract]:With the development of computer information technology, the application scale of network information technology in examination is more and more large. Examination is an important link in teaching. With the increase of the number of examinations and the expansion of examination scale, the traditional examination content limited multiple choice questions and questions gradually evolved into single topic selection, multi-topic selection, objective subjective selection of questions, subjective test questions. Divergent thinking questions and other questions as one of the diversified development situation, the traditional marking of the error of the paper evaluation, the statistical analysis of scores after marking, the transport and storage of test papers can not achieve accuracy. The network marking system is a new type of marking method which aims at improving the marking speed, reducing the error of the subjective questions marking, facilitating the statistical analysis of the scores and the management and archiving of the examination papers, and taking the principle of fairness and fairness in the examination as the purpose. In this paper, the design mode of "Internet", digital image processing technology and big data analysis technology are adopted, and the complicated marking work and the complicated data statistical analysis are automatically completed by the system "scan and review". The system is mainly divided into two parts: objective question marking and subjective question marking. After image scanning, the system automatically recognizes the basic information of the examinee, and the objective questions are automatically graded by the system. The subjective questions are distributed randomly to the computer terminal by the system, and the network marking is carried out by the marking teachers. The multiple evaluation mechanism is injected into the marking process to ensure the fairness of the marking, and the system automatically carries out the results statistics and verification. The combination of computer network technology and teachers' marking experience not only reduces the error of marking but also improves the efficiency of marking. The main work of this paper is as follows: (1) on the basis of reading related literature, this paper analyzes and compares the domestic and foreign research background and current situation, and analyzes the advantages and disadvantages of several domestic systems. This paper expounds the importance of developing a network marking system with high efficiency and strong function. According to the real needs of users, it combines the educational technology theory of network application in education. Analysis and design of the whole system development scheme; (2) analysis of the image preprocessing technology, aiming at several commonly used image preprocessing methods, find out the image preprocessing technology suitable for this system. The electronic scan answer card is preprocessed and the objective answer recognition is realized. Finally, the convolution neural network is applied to the field of handwritten answer and test number recognition, which realizes the automatic recognition of the objective answer and handwritten answer and the test number. The accuracy and efficiency of the system in recognition are improved effectively. (3) at last, the system adopts the B / S development mode, uses SSH framework Java technology and MySQL database, and finally develops and realizes the whole marking system.
【学位授予单位】:石家庄铁道大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:G434

【参考文献】

相关期刊论文 前10条

1 曾雪琼;黎杰;;基于卷积神经网络的时频图像识别研究[J];机械与电子;2016年05期

2 胡青;刘本永;;基于卷积神经网络分类的说话人识别算法[J];信息网络安全;2016年04期

3 阳哲;;卷积神经网络在印章编号识别中的应用[J];现代计算机(专业版);2016年04期

4 宋波;王启春;;卷积神经网络在路牌识别中的应用[J];公路交通技术;2015年05期

5 王振;高茂庭;;基于卷积神经网络的图像识别算法设计与实现[J];现代计算机(专业版);2015年20期

6 蔡娟;蔡坚勇;廖晓东;黄海涛;丁侨俊;;基于卷积神经网络的手势识别初探[J];计算机系统应用;2015年04期

7 余永维;殷国富;殷鹰;杜柳青;;基于深度学习网络的射线图像缺陷识别方法[J];仪器仪表学报;2014年09期

8 郑胤;陈权崎;章毓晋;;深度学习及其在目标和行为识别中的新进展[J];中国图象图形学报;2014年02期

9 徐虹;高伟;;美国大学考试形式及其对我国考试评价改革的启示[J];教育探索;2013年07期

10 徐姗姗;刘应安;徐f;;基于卷积神经网络的木材缺陷识别[J];山东大学学报(工学版);2013年02期

相关博士学位论文 前1条

1 郑泽忠;基于高分辨率航空影像高速公路汽车目标检测算法研究[D];西南交通大学;2010年

相关硕士学位论文 前8条

1 常欢;基于卷积神经网络的孤立手写体汉字识别研究[D];安徽大学;2015年

2 李敏;基于BS模式的网络阅卷系统的设计与实现[D];吉林大学;2014年

3 张爱娟;基于结构特征点的字符分割技术的研究[D];西安电子科技大学;2014年

4 陈寅;植物叶形状与叶脉结构的自动分类研究[D];浙江理工大学;2013年

5 谢琪林;网上阅卷系统设计与实现[D];电子科技大学;2011年

6 张智轶;基于图像处理的燃烧物识别技术的研究[D];东华大学;2011年

7 孙伟;基于FPGA的图像分割提取系统研究[D];南京航空航天大学;2010年

8 王添翼;基于卷积网络的三维模型特征提取[D];吉林大学;2006年



本文编号:2265253

资料下载
论文发表

本文链接:https://www.wllwen.com/jiaoyulunwen/jiaoyutizhilunwen/2265253.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e9a9d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com