福建省主要城市自主创新投入能力的组合评价模型
本文关键词:福建省主要城市自主创新投入能力的组合评价模型 出处:《华中师范大学》2015年硕士论文 论文类型:学位论文
更多相关文章: 创新投入能力 单一评价模型 事前事后检验 组合评价模型 Matlab SPSS Lingo
【摘要】:在提倡建立自主创新国家的时代背景下,研究一个城市的创新能力,为领导城市的发展做出正确的决策具有一定的意义。创新能力包括许多方面,其中创新投入能力能够充分体现出一个城市的经济发展情况以及城市领导者对创新能力的重视程度。而评价模型的目的是为了了解各个对象在各指标上存在的差异,为决策者做出合理科学的政策提供一定的理论依据。本文主要研究2011年福建省福州、厦门、泉州、三明、莆田、南平这六个城市在科学技术支出、教育支出、普通高中教师人数、普通高中学生人数这四个指标上的创新投入能力的评价模型,为福建省领导这六个城市的发展做出科学的政策提供一些建议。这篇文章主要有三个目的:(1)探索福建省这六个城市在创新投入能力上的排名情况;(2)进一步探究熵权法、灰度关联法、主成份分析法、层次分析法这四个模型在评价福建省这六个城市的创新投入能力方面的的可用性;(3)通过组合评价模型的事前事后检验,探究出这六个城市在创新投入能力方面更合理的组合评价模型。本文首先建立了熵权法、灰度关联法、主成份分析法、层次分析法这四种单一评价模型。熵权法模型是通过利用加权求和公式计算出样本的评价值,得到这六个城市的评价值为U=(0.6436,0.6957,0.7577,0.2737,0.2972,0.2221)T;灰度关联法模型则是通过计算出数据的关联系数, 得到关联度大小B=(0.6761,0.6012,0.8139,0.3972,0.4199,0.3831)T:主成份分析法模型是以特征值的贡献率加权系数来计算总得分的,得到综合得分的表达式为:F=68.823F1+28.561F2, 计算得到各城市的综合得分分别为F=(71.2601,-22.9713,113.4785,-58.3065,-35.4973,-67.9628)T。本文中层次分析法模型则先由专家构造出判断矩阵,通过一致性检验后,计算出单排序值,最后计算出总排序值w=(0.2524,0.3023,0.2733,0.0638,0.0663,0.0418)T。其次探究了进行评价方法集成的事前事后检验,得出可以进行集合的评价模型,从而建立了平均值法、模糊Borda法、最小偏差法、拟合法这四个组合模型。平均值法模型是对单一模型的排序值进行分数转化后再进行总排序值模糊Borda法在平均值模型上考虑得分差异因素计算出模糊Borda分数FB=(2.8000,4.1333,0.0667,9.3333,7.0000,11.6667)T;最小偏差法模型则是把客观熵权法与主观层次分析法进行集合得到的优化模型,得到评价值X=(0.4611,0.5171,0.5104,0.1714,0.1814,0.1308)T;拟合法模型则是集合客观灰度关联法与主观层次分析法 , 拟合得到评价值X=(0.6310,0.7437,0.6964,0.3848,0.3943,0.3664)T。最后综合单一与组合评价模型,得到的结论是:建立主客观相结合的组合模型——最小偏差模型与拟合模型的结果更合理。福建省这六个城市在创新投入能力的排序中,厦门位居第一、泉州第二、福州第三,第四五六名分别是莆田、三明及南平。这与2011年这六个城市发展情况大致吻合。文章针对这六个城市经济发展的不同特点,还提出相对应的建议:厦门要加大对职业技术教育的投入;泉州则要加大对新兴产业技术的投入;福州须完善对科技的投入体系;莆田可以靠旅游实行跨越式发展;三明要以食品带动对科技与人才培养的投入;南平应该以农业促经济,带动科技与人才的发展。希望这能够为福建省的领导对城市发展做出决策时候提供一些参考意见。本文针对不同的模型,主要借助Matlab、SPSS、Lingo软件来实现模型的求解,具有较高的精确度。
[Abstract]:The establishment of the national independent innovation in the background of advocating, a city of innovation ability, has certain significance for the development of the leadership of the city to make correct decisions. The innovation ability includes many aspects, the innovation capacity can fully reflect a city's economic development and city leaders on the importance of innovation ability and evaluation model in order to understand the difference of each object in the presence of each index, to provide a theoretical basis for decision makers to make reasonable policy. This paper mainly studies the Fujian province in 2011 in Fuzhou, Xiamen, Quanzhou, Sanming, Putian, Nanping city in the six science and technology expenditure, education expenditure, ordinary high school the number of teachers, evaluation of innovation input ability of these four indicators on the model number of the students in ordinary high school, the development of the six leading city in Fujian province to make a scientific To provide some policy suggestions. This article has three main purposes: (1) to explore the six city in Fujian province innovation investment ranking ability; (2) to further explore the entropy method and gray correlation method, principal component analysis, analytic hierarchy process of the four models in the availability of ability the innovation evaluation of Fujian Province, the six city; (3) through the combination evaluation model before and after the inspection, to explore the combination evaluation of the six city investment in innovation ability of a more reasonable model. This paper firstly established the entropy method, gray correlation method, principal component analysis, the analytic hierarchy process the four single evaluation model. Entropy model is obtained by using weighted summation formula to calculate the sample evaluation value, get the evaluation of the six city value of U= (0.6436,0.6957,0.7577,0.2737,0.2972,0.2221) T; gray correlation method is calculated by the model The correlation coefficient of the data obtained, the correlation degree of B= (0.6761,0.6012,0.8139,0.3972,0.4199,0.3831) T: principal component analysis model is to calculate the total score of the weighting coefficients to the characteristic value of the contribution rate, expression of comprehensive score is F=68.823F1+28.561F2, calculate the comprehensive score of each city were F= (71.2601, -22.9713113.4785, -58.3065, -35.4973 -67.9628, T.) level this paper analysis model is constructed by the expert judgment matrix, the consistency test, calculate the single ranking value, finally calculates the total order value of w= (0.2524,0.3023,0.2733,0.0638,0.0663,0.0418) T. then explores the evaluation method for the integration of pre and post test, it can be set so as to establish the evaluation model. The average value method, fuzzy Borda method, minimum deviation method, fitting the combination of these four models. The average method of single model A model of fractional transformation after ranking value of total ranking value of fuzzy Borda method in mean value model considering the factors scores calculated by fuzzy Borda scores FB= (2.8000,4.1333,0.0667,9.3333,7.0000,11.6667) T; minimum deviation model is the objective entropy weight method and the subjective level analysis method is used to optimize the model set, get the evaluation value X= (0.4611,0.5171,0.5104,0.1714,0.1814,0.1308) T; fitting model is a set of objective and subjective gray correlation method AHP, fitting evaluation value X= (0.6310,0.7437,0.6964,0.3848,0.3943,0.3664) T. the last single and combined evaluation model, the conclusion is: the establishment of subjective and objective combination model combining with the minimum deviation model and fitting model is more reasonable. Fujian Province, the six City in the innovation capacity ranking, Xiamen ranked first, Stephen In second, Fuzhou third, No. 456 were Putian, Sanming and Nanping. These are in good agreement with the development of the six city in 2011. The different characteristics of the six city economic development, the corresponding suggestions are also proposed to increase the Xiamen occupation technology education investment; Quanzhou is to increase the emerging Fuzhou Industrial Technology investment; to improve investment in science and technology system; Putian can rely on Tourism implement leap forward development; Sanming to food drives to cultivate technology and talent investment; Nanping should agriculture and economy, promote the development of science and technology and talent. Hope it will be for the leadership of Fujian province to make a decision for City development this paper provides some suggestions. According to different models, mainly by means of Matlab, SPSS, for Lingo software to realize the model, has higher accuracy.
【学位授予单位】:华中师范大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:F124.3;F224
【共引文献】
相关期刊论文 前10条
1 王国平;田备;邹昀;刘明晴;;大学教学楼建设使用后评价研究[J];四川建筑科学研究;2012年01期
2 王金亮;陈全;;模糊层次综合分析法在油库安全评价中的应用[J];安防科技;2011年04期
3 王金亮;陈全;;模糊层次综合分析法在油库安全评价中的应用[J];安防科技;2011年10期
4 王传玉;改进AHP中判断矩阵一致性的一种新方法[J];安徽机电学院学报;2001年04期
5 王慧娟;吴月红;;高校研究生业务素质综合评价体系及其数学模型[J];安徽工程科技学院学报(自然科学版);2006年01期
6 邓寿年;姜培华;;度量判断矩阵相容性的新方法[J];安徽工程科技学院学报(自然科学版);2010年03期
7 师子峰;;层次分析法在丘陵地区土地整理生态效益评价中的应用——以重庆市黄泥堡项目区为例[J];安徽农学通报(上半月刊);2010年09期
8 章尚正;赵磊;;区域旅游国际化发展竞争力评价指标体系研究——以皖南国际旅游文化示范区为例[J];安徽农业大学学报(社会科学版);2012年02期
9 张浩;王勇;徐大华;;层次分析法在联合收割机综合评判中的应用[J];安徽农业科学;2006年23期
10 徐忆梅;叶春明;;层次分析法在地价影响因素分析中的应用[J];安徽农业科学;2008年09期
相关博士学位论文 前10条
1 盛峰;公平与效率均衡的财政投资项目社会影响评价模型与方法研究[D];南开大学;2010年
2 任家福;服务商选择与备件备品库存管理研究[D];电子科技大学;2010年
3 汤亮;基于综合效益评价的陶瓷产品全生命周期理论研究及应用[D];武汉理工大学;2010年
4 闫中敏;Deep Web数据获取问题研究[D];山东大学;2010年
5 殷志军;中小企业信用担保机构运行机制和效率研究[D];浙江大学;2011年
6 李天梅;装备测试性验证试验优化设计与综合评估方法研究[D];国防科学技术大学;2010年
7 肖人毅;面向过程的科研项目评价方法研究[D];大连理工大学;2011年
8 邵新;基于人力资本的传媒业人力资源竞争力研究[D];大连理工大学;2011年
9 王博;复杂电力系统安全风险及脆弱性评估方法研究[D];华中科技大学;2011年
10 杜玉华;马克思社会结构理论及其对和谐社会建设的启示[D];华东师范大学;2011年
,本文编号:1416364
本文链接:https://www.wllwen.com/jingjilunwen/hongguanjingjilunwen/1416364.html