当前位置:主页 > 经济论文 > 宏观经济论文 >

Cox模型中的自适应Lasso变量选择

发布时间:2018-06-05 09:07

  本文选题:Cox模型 + 自适应Lasso ; 参考:《统计与决策》2016年10期


【摘要】:文章考虑了Cox模型的变量选择问题,将自适应Lasso引入到Cox模型中,提出了一类基于惩罚偏似然函数的自适应Lasso估计程序。通过对偏似然函数采用二阶泰勒展开式近似逼近,运用循环坐标下降法求解模型,再借助牛顿—拉普森迭代完成整个变量选择和估计过程。随机数据模拟的结果表明该方法具有优良的变量选择效果,并适用于高维数据。
[Abstract]:In this paper, the variable selection problem of Cox model is considered. Adaptive Lasso is introduced into Cox model, and a class of adaptive Lasso estimators based on penalty partial likelihood function is proposed. The partial likelihood function is approximated by the second-order Taylor expansion, the model is solved by the cyclic coordinate descent method, and the whole process of variable selection and estimation is completed by Newton-Raphson iteration. The results of random data simulation show that this method has good variable selection effect and is suitable for high dimensional data.
【作者单位】: 暨南大学经济学院;
【分类号】:F224

【相似文献】

相关期刊论文 前10条

1 高仁祥,张世英,刘豹;基于神经网络的变量选择方法[J];系统工程学报;1998年02期

2 杨璐,高自友;用神经网络进行变量选择[J];北方交通大学学报;1999年03期

3 赵进文;模型构建中变量选择的影响分析[J];东北财经大学学报;2002年06期

4 李扬;朱建锋;谢邦昌;;变量选择方法及其在健康食品市场研究中的应用探究[J];统计与信息论坛;2013年10期

5 周伟,王建军,李继锐;基于人工神经网络的影响高速公路社会效益量化的变量选择方法[J];西安公路交通大学学报;2000年03期

6 齐晓丽;梁慧超;冯彦妍;;回归模型构建中变量选择的研究[J];河北工业大学学报;2009年06期

7 邓金兰;王彬寰;樊仕利;;变系数模型的变量选择及在股票数据中的应用[J];四川大学学报(自然科学版);2009年06期

8 胡心瀚;叶五一;缪柏其;;上市公司信用风险分析模型中的变量选择[J];数理统计与管理;2012年06期

9 杨金英;;变系数模型的快速变量选择方法[J];统计与决策;2012年05期

10 汪建均;马义中;;结合GLM与因子效应原则的贝叶斯变量选择方法[J];系统工程理论与实践;2013年08期

相关会议论文 前6条

1 张俊华;方伟武;;调查表分析中变量选择的一些方法(英文)[A];中国运筹学会第六届学术交流会论文集(下卷)[C];2000年

2 李洪东;梁逸曾;;高维数据变量选择新方法研究[A];中国化学会第27届学术年会第15分会场摘要集[C];2010年

3 李慷;席裕庚;;复杂过程系统中操作变量选择与定位的方法研究[A];1993年控制理论及其应用年会论文集[C];1993年

4 云永欢;王为婷;梁逸曾;;迭代的保留有信息变量来筛选最佳变量子集的一种多元校正变量选择方法[A];中国化学会第29届学术年会摘要集——第19分会:化学信息学与化学计量学[C];2014年

5 徐登;范伟;梁逸曾;;紫外光谱结合变量选择和偏最小二乘回归同时测定水中重金属镉、锌、钴[A];中国化学会第29届学术年会摘要集——第19分会:化学信息学与化学计量学[C];2014年

6 梁逸曾;李洪东;许青松;曹东升;张志敏;;灰色化学建模与模型集群分析——兼论过拟合、稳健估计、变量选择与模型评价[A];中国化学会第27届学术年会第15分会场摘要集[C];2010年

相关博士学位论文 前10条

1 王大荣;分散度量模型中的变量选择[D];北京工业大学;2009年

2 王明秋;高维数据下若干回归模型的变量选择问题研究[D];大连理工大学;2012年

3 刘吉彩;生存数据统计模型的变量选择方法[D];华东师范大学;2014年

4 樊亚莉;稳健变量选择方法的若干问题研究[D];复旦大学;2013年

5 唐凯临;变量选择和变换的新方法研究[D];同济大学;2008年

6 董莹;高维共线性统计模型的参数估计与变量选择[D];大连理工大学;2014年

7 叶飞;相对误差准则下的估计理论和变量选择方法的研究[D];清华大学;2013年

8 袁晶;贝叶斯方法在变量选择问题中的应用[D];山东大学;2013年

9 王树云;基于Bayes方法和图限制下正规化方法的变量选择问题及其在基因组数据中的应用[D];山东大学;2010年

10 姬永刚;分位数回归中的贝叶斯变量选择[D];东北师范大学;2012年

相关硕士学位论文 前10条

1 赵冬琦;基于变量选择的股指期货对股票市场影响的实证研究[D];兰州大学;2015年

2 程勇;多水平模型的变量选择在农户人均收入数据中的应用[D];云南财经大学;2015年

3 邓秋玲;SCAD和ADS方法在比例风险模型中的应用[D];广西大学;2015年

4 韦新星;几种变量选择方法在Cox模型中的应用[D];广西大学;2015年

5 王唯;部分线性模型的变量选择问题研究[D];湘潭大学;2015年

6 徐国盛;若干模型的分位数变量选择[D];浙江财经大学;2016年

7 郭雪梅;部分线性模型中差分估计与SCAD的比较及带有异常点的非负变量选择[D];重庆大学;2015年

8 王艳;复共线性及异方差线性模型中的参数估计与变量选择[D];重庆大学;2015年

9 杨成敏;广义线性模型中的参数估计及变量选择方法研究[D];重庆大学;2015年

10 钟冬梅;线性模型中的变量选择及股票市场实证研究[D];重庆大学;2015年



本文编号:1981453

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/hongguanjingjilunwen/1981453.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户541f7***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com