可信性均值-绝对偏差投资组合优化
发布时间:2018-09-04 08:46
【摘要】:为了度量金融市场的不确定性,本文引入了模糊变量。假设资产收益率为模糊数,分别运用可信性均值和可信性绝对偏差度量投资组合的收益与风险。考虑到投资者偏好,分别提出了以收益最大化的均值-绝对偏差优化模型和以风险最小化的优化模型。基于可信性理论,将上述模型转化为线性规划问题,并运用旋转算法求解。通过实证研究,证明了该算法的有效性,并比较了两个模型在实际投资决策过程中的效率。结果表明,以收益最大化的均值-绝对偏差优化模型效率优于风险最小的优化模型。
[Abstract]:In order to measure the uncertainty of financial markets, fuzzy variables are introduced in this paper. Assuming that the return on assets is a fuzzy number, the return and risk of the portfolio are measured by the creditability mean and the absolute deviation of credibility respectively. Considering the preference of investors, the Mean-absolute deviation optimization model and the risk minimization optimization model are proposed respectively. Based on credibility theory, the above model is transformed into linear programming problem and solved by rotation algorithm. The effectiveness of the algorithm is proved by empirical research, and the efficiency of the two models in the process of investment decision is compared. The results show that the efficiency of the mean-absolute deviation optimization model is better than that of the least risk optimization model.
【作者单位】: 武汉理工大学经济学院;武汉科技大学管理学院;
【基金】:国家自然科学基金资助项目(71271161) 国家社科基金资助项目(13BJL0062) 武汉理工大学自主创新研究基金资助项目(175215003)
【分类号】:F832.5
本文编号:2221589
[Abstract]:In order to measure the uncertainty of financial markets, fuzzy variables are introduced in this paper. Assuming that the return on assets is a fuzzy number, the return and risk of the portfolio are measured by the creditability mean and the absolute deviation of credibility respectively. Considering the preference of investors, the Mean-absolute deviation optimization model and the risk minimization optimization model are proposed respectively. Based on credibility theory, the above model is transformed into linear programming problem and solved by rotation algorithm. The effectiveness of the algorithm is proved by empirical research, and the efficiency of the two models in the process of investment decision is compared. The results show that the efficiency of the mean-absolute deviation optimization model is better than that of the least risk optimization model.
【作者单位】: 武汉理工大学经济学院;武汉科技大学管理学院;
【基金】:国家自然科学基金资助项目(71271161) 国家社科基金资助项目(13BJL0062) 武汉理工大学自主创新研究基金资助项目(175215003)
【分类号】:F832.5
【相似文献】
相关期刊论文 前6条
1 连仁源;许若宁;;基于交易费用和绝对偏差的证券投资组合模型[J];邵阳学院学报(自然科学版);2010年02期
2 张鹏;曾永泉;;均值-半绝对偏差投资组合优化研究[J];科学技术与工程;2008年01期
3 陈炜;杨玲;;具有交易费用的均值—极大极小半绝对偏差投资组合模型[J];首都经济贸易大学学报;2009年06期
4 张鹏;;多阶段均值-半绝对偏差模糊投资组合优化研究[J];模糊系统与数学;2013年01期
5 庄新田;刘洋;池丽旭;;基于模糊时间序列的投资组合折中规划[J];东北大学学报(自然科学版);2009年06期
6 ;[J];;年期
相关硕士学位论文 前2条
1 孟祥环;基于多目标规划下的风险组合投资模型的应用研究[D];武汉科技大学;2013年
2 隋意;投资组合的若干数学模型[D];吉林大学;2009年
,本文编号:2221589
本文链接:https://www.wllwen.com/jingjilunwen/hongguanjingjilunwen/2221589.html