基于非参数核估计模型的服装销售预测研究
[Abstract]:Clothing market is a typical buyer's market. In the fierce market competition, clothing belongs to short life cycle products. It has the characteristics of longer lead time, shorter sales period, lower end-of-life residual value, rapid demand change, and so on, and the clothing market has the characteristics of long lead time, shorter sales period, lower end-of-term residual value and rapid demand change. It makes it difficult for clothing suppliers to accurately predict the market demand and sales trend, and the traditional order meeting pattern in China can not respond quickly to the change of fashion trend and consumer preference. When making market forecast, many garment enterprises often lack scientific and careful planning scheme, make qualitative judgment by virtue of personal experience and subjective thought, forecast accuracy is low, blindly order and replenish make output and future sales situation not match, There may be a risk of out-of-stock. However, more clothing companies will face a backlog of inventory, increased operating costs, reduced profits and income, affecting their long-term development. The research object of this paper is a fashion leisure clothing company with a first-line brand in China. The short life cycle is more prominent in fashion clothing. Combined with the product characteristics and sales data of the clothing company, this paper solves the difficult problems in the forecast of the sales volume of the clothing company by mathematical method, and looks for a reliable forecast scheme to improve the forecast precision of fashion clothing sales. The main research achievement of this paper is to use MATLAB as a programming tool to divide the life cycle of clothing company products and to design a non-parametric kernel density estimation model to predict the product life cycle. The non-parametric kernel estimation function is used to predict the daily and total sales of clothing in each category of the company, and the accuracy of the forecast results is tested. On the basis of the effective result, the paper puts forward some suggestions on the decision-making of the company's order according to the forecast. The research in this paper can help garment companies to establish and perfect the forecasting system, and provide reference for enterprises to arrange the production replenishment plan reasonably.
【学位授予单位】:浙江工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:F274;F426.86;F224
【相似文献】
相关期刊论文 前10条
1 周志丹;回归函数的核估计法及其在经济分析中的应用[J];浙江万里学院学报;2002年01期
2 胡明;马鸿杰;;基于核估计的缺损生存数据分析[J];统计与决策;2009年02期
3 周卫国;郭照庄;;核估计法在居民消费模型中的应用[J];消费导刊;2010年08期
4 司继文;黄荣兵;龚朴;;非参数VaR方法在SPAN系统中的应用[J];武汉理工大学学报(交通科学与工程版);2007年04期
5 朱宏泉,卢祖帝,汪寿阳;VALUE-AT-RISK的核估计理论[J];系统科学与数学;2002年03期
6 邱小平,杨群;中国股市的风险度量研究[J];统计与决策;2005年02期
7 徐静;张瑛;;非参数回归的核估计法在经济分析中的应用[J];科技信息(科学教研);2008年25期
8 姚永源;杨善朝;刘静;;基于次序统计量的ES核估计[J];经济数学;2008年04期
9 夏师;;非参数核估计计算VaR在农业板块的实证研究[J];湖北理工学院学报(人文社会科学版);2013年01期
10 李和金,李湛,李为冰;非参数利率期限结构模型的理论与实证研究[J];数量经济技术经济研究;2002年02期
相关会议论文 前2条
1 吴玉霞;;基于密度函数核估计的中国省域居民收入不确定性动态分析[A];第七届河北省社会科学学术年会论文专辑[C];2012年
2 叶阿忠;;我国通货膨胀的核估计和k-近邻估计[A];计算机模拟与信息技术会议论文集[C];2001年
相关硕士学位论文 前10条
1 马雷;时变扩散方程扩散系数的核估计[D];南京理工大学;2010年
2 黄学维;密度核估计的广义相合性[D];湖北师范学院;2010年
3 赵颖;球面变换核估计及其一致收敛速度[D];北京工业大学;2001年
4 朱亚培;密度核估计的改进及其相关问题的讨论[D];兰州交通大学;2015年
5 马珂;基于非参数核估计模型的服装销售预测研究[D];浙江工业大学;2015年
6 孙婷;平稳遍历函数型数据非参数核估计的渐近分布[D];合肥工业大学;2015年
7 杨秀桃;ρ-混合金融时序VaR核估计的一些性质[D];广西师范大学;2008年
8 姚永源;基于统计量的ES核估计[D];广西师范大学;2008年
9 褚盈;多元概率密度函数的Beta核估计[D];浙江大学;2013年
10 李永明;NA随机变量递归密度核估计的渐近性质[D];广西师范大学;2002年
,本文编号:2432254
本文链接:https://www.wllwen.com/jingjilunwen/hongguanjingjilunwen/2432254.html