风险投资组合的线性规划模型的建立及求解
发布时间:2019-03-27 09:02
【摘要】:当要对比市场上的无风险投资(如存入银行)与多种风险投资组合两种投资方式并进行组合投资策略时,要考虑两个目标,即尽可能获得最大总收益同时承担尽可能小的总体风险,但是这两个目标很难同时实现,因为高收益意味着高风险。文章通过设计一个有关于投资组合的线性规划模型来讨论这两个问题。通过选取合适的决策变量以化解风险函数的非线性性。通过对因子进行加权,我们求得了最佳方案并得到了有效投资曲线。投资者根据有效的投资曲线结合自己的偏好,选择自己的投资方向。最后通过非线性规划,说明线性规划的结果对于交易费收取的阈值有一定的容忍度。
[Abstract]:When comparing and implementing portfolio strategies between risk-free investments (such as depositing banks) in the market and multiple venture capital portfolios, two goals should be considered. Both goals are difficult to achieve at the same time because high returns mean high risks. This paper discusses these two problems by designing a linear programming model with portfolio. The nonlinearity of risk function is solved by selecting appropriate decision variables. By weighting the factors, we obtain the best scheme and obtain the effective investment curve. Investors according to the effective investment curve combined with their own preferences, choose their own investment direction. Finally, through nonlinear programming, it is shown that the result of linear programming has a certain tolerance to the threshold of transaction fee collection.
【作者单位】: 中南财经政法大学统计与数学学院;
【基金】:国家社会科学基金资助项目(13B7J011)
【分类号】:F224;F830.59
本文编号:2448054
[Abstract]:When comparing and implementing portfolio strategies between risk-free investments (such as depositing banks) in the market and multiple venture capital portfolios, two goals should be considered. Both goals are difficult to achieve at the same time because high returns mean high risks. This paper discusses these two problems by designing a linear programming model with portfolio. The nonlinearity of risk function is solved by selecting appropriate decision variables. By weighting the factors, we obtain the best scheme and obtain the effective investment curve. Investors according to the effective investment curve combined with their own preferences, choose their own investment direction. Finally, through nonlinear programming, it is shown that the result of linear programming has a certain tolerance to the threshold of transaction fee collection.
【作者单位】: 中南财经政法大学统计与数学学院;
【基金】:国家社会科学基金资助项目(13B7J011)
【分类号】:F224;F830.59
【相似文献】
相关期刊论文 前10条
1 徐斌;李南;白芳;;灰色离散双层漂移型线性规划模型及其交互式补偿模糊算法[J];系统工程;2007年11期
2 代大为;;线性规划模型在经济管理中的应用[J];牡丹江师范学院学报(自然科学版);2014年01期
3 尤廷荣;;线性规划模型应用——如何制定家具生产计划[J];中国城市经济;2011年20期
4 李德勇;;灰矩阵博弈的灰线性规划模型求解[J];统计与决策;2013年05期
5 汪永高,刘金铎;生产安排最短工期问题的线性规划模型解法[J];华北矿业高等专科学校学报;1999年02期
6 徐家旺,姜波;中小型企业建立生产计划优化线性规划模型的通用模式[J];沈阳航空工业学院学报;2003年01期
7 潘国祥,刘智宾,李皓;基金存储方案[J];工程数学学报;2002年S1期
8 邓刚毅,许剑勇,周斌;风险投资组合的线性规划模型[J];数学的实践与认识;1999年01期
9 马宁;李尧;;谈经济管理中的线性规划模型的解法[J];成功(教育);2009年05期
10 赵明阳;;投资组合线性规划模型的一个简单应用[J];时代金融;2012年33期
相关硕士学位论文 前1条
1 张静;绿色GDP线性规划模型构建及其解的政策启示[D];延安大学;2009年
,本文编号:2448054
本文链接:https://www.wllwen.com/jingjilunwen/hongguanjingjilunwen/2448054.html