球面网壳风敏感性等效及静风荷载研究
发布时间:2018-04-14 07:52
本文选题:大跨度屋盖结构 + 球面网壳 ; 参考:《哈尔滨工业大学》2015年硕士论文
【摘要】:现代结构正在向大跨、轻质以及低阻尼方向发展,结构的风敏感性日益突出。目前,高层、高耸和桥梁结构的抗风设计理论框架基本形成;而大跨度屋盖结构由于具有多荷载形态、多响应振型和多等效目标的特点,抗风设计理论尚不成熟。采用高层、高耸结构的设计方法进行大跨屋盖结构的抗风设计不能满足安全性及经济性的要求。本文以风敏感度概念为基础,对风敏感度理论进行改进,以此研究球面网壳结构的风敏感性;通过风敏感度对球面网壳结构进行抗风设计分级,并提出相应的等效静风荷载方法;并采用此方法对超大跨穹顶结构进行了抗风性能分析。本文主要工作如下:(1)阐述风敏感度理论的分析方法,并对相关内容进行了改进。在风敏感度理论中,球面网壳结构为多模态耦合结构,通过定义共振效应系数可以综合考虑频率效应和模态效应。(2)通过对不同结构参数的单层及双层球面网壳进行风敏感性分析,比较结构的风敏感度,可以得到影响结构风敏感度的主要因素,并给出相应关系表达式。不同单层球面网壳结构风敏感度差异较大,根据矢跨比将单层球面网壳结构按风敏感度分级。矢跨比较小的单层球面网壳为高风敏感结构;矢跨比较大的单层球面网壳为低风敏感结构;双层球壳为低风敏感结构。(3)整体风振系数法采用平均风荷载为基向量对极值风响应进行拟合,进而得到结构等效静风荷载,对应系数为整体风振系数。采用整体风振系数法得出了单层球面网壳位移整体风振系数和应力整体风振系数与结构风敏感度参数的拟合公式,通过统计分析得出适合工程应用的球面网壳的整体风振系数表及其适用范围。(4)通过弹性时程分析,比较风荷载下三种跨度的超大跨穹顶结构的自振特性、节点位移、杆件内力,支座反力,超大跨球壳的脉动风响应和平均风响应,得出脉动响应可以忽略,大跨度球面网壳的结构风敏感度较小,为低风敏感结构。
[Abstract]:The modern structure is large span, light and low damping direction, wind sensitive structure becomes more obvious. At present, the top, the wind resistant design theory and high bridge structure formation; and large span roof structures with multiple load form, multi type and multi vibration response characteristics of equivalent target, wind resistant design theory is still not mature. The design method of high-rise, high-rise structure are not large span roof wind resistance design to meet the safety and economy requirements. Based on the concept of sensitivity to wind, wind sensitivity theory is improved, the wind sensitivity in order to study the spherical reticulated shell structure; the wind through the sensitivity to the spherical reticulated shell structure of wind resistant the design of classification, and put forward the corresponding method of equivalent static wind load; and the use of this method for super long-span dome structure of wind resistance analysis. The main work of this paper is as follows: (1) this The analysis method of wind sensitivity theory, and related content has been improved. In the wind sensitivity theory, spherical reticulated shell structure multi modal coupling structure, can consider the frequency and modal effect by defining the resonance effect coefficient. (2) the wind through the sensitivity analysis of single layer with different structure parameters and the double-layer spherical reticulated shell and compare the structure of the wind sensitivity, can get the main factors affecting the structure of wind sensitivity, and the corresponding expressions. Different latticed shell structure wind sensitive degree differences, according to the ratio of rise to span single-layer spherical reticulated shell structure according to wind sensitivity classification. The span of single-layer spherical shell is relatively small for the high wind sensitive structure; span single-layer spherical reticulated shell relatively large low wind sensitive structure; double layered spherical shell for low wind sensitive structure. (3) the wind vibration coefficient method using average wind load based on extreme wind vector Should be fitting, then get the equivalent static wind load structure, the corresponding coefficient of wind vibration coefficient. The wind vibration coefficient of the overall method of fitting formula of overall wind vibration coefficient of single-layer spherical shell displacement and stress of the whole wind vibration coefficient and the structure of wind sensitive parameters, the overall wind vibration coefficient table through statistical analysis of spherical shell suitable for the engineering application and scope. (4) through the elastic time history analysis, super - span dome structure of three span self vibration characteristics, displacement under wind load, internal forces of rod, bearing force, fluctuating wind response and average wind response of super long-span spherical shell, the impulse response can be ignored the structure of the wind, smaller sensitivity of large-span latticed shell, low wind sensitive structure.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TU399
【参考文献】
相关期刊论文 前5条
1 陈波;李明;杨庆山;;大跨平屋盖的多目标等效静风荷载研究[J];振动与冲击;2013年24期
2 陈波;杨庆山;武岳;;大跨屋盖结构抗风类型划分方法及应用[J];北京交通大学学报;2011年04期
3 张建胜;武岳;沈世钊;;单层网壳结构的风振响应与抗风设计[J];武汉理工大学学报;2006年07期
4 洪小健,顾明;顺风向等效风荷载及响应——主要国家建筑风荷载规范比较[J];建筑结构;2004年07期
5 杨庆山,沈世钊,何成杰;悬索结构风振系数计算[J];哈尔滨建筑大学学报;1995年06期
,本文编号:1748362
本文链接:https://www.wllwen.com/jingjilunwen/jianzhujingjilunwen/1748362.html