中国上市公司经营绩效的时空演化特征及其影响因素研究
本文选题:上市公司 + 经营绩效 ; 参考:《安徽师范大学》2017年硕士论文
【摘要】:中国证券市场经过二十多年发展日趋完善,上市公司作为证券市场的主体,已成为行业的龙头和引擎,是国家经济发展中重要的战略支撑。上市公司的经营绩效直接体现上市公司的发展水平,反映我国宏观经济的发展状况。因此,正确评价上市公司经营绩效状况,探究上市公司经营绩效时空演化特征,揭示影响经营绩效的宏观外部因素,有利于正确认识与评价我国经济区域发展水平和指导经济发展方向。本文根据目前已有研究,初步构建上市公司经营绩效评价指标体系,采用纵向截面比较法,以中小板、创业板开板前的2003年、2008年和2015年这三年上市公司财务数据作为研究样本,测度中国上市公司经营综合绩效;借助GeoDa和ArcGIS软件中的空间分析工具,对不同时期中国上市公司经营绩效的空间分布特征和空间自相关性进行分析,发现其演化趋势;基于2015年的截面数据,进行多元线性回归分析,揭示上市公司经营绩效的外部影响因素。研究结论表明:1)2003年以来中国上市公司数量逐年递增,2009年后增幅逐年加大。上市公司的增长幅度具有明显的地域差异性,增幅的“低谷区”集中在东北、西南、西北等地区,且内部分布极不平衡;增幅的“高峰区”集中在东部地区。目前,中国上市公司多数集中分布在东部沿海地区,从类别上看东部地区上市公司以资本密集型和技术密集型企业为主;中西部地区以资源类和能源类企业为主;从整体来看,全国上市公司的空间分布差异明显,发展程度不均衡,呈现出“马太效应”。2)中国上市公司经营绩效的时空分布具有显著的空间自相关性,趋向于高值集聚和低值集聚的空间相关性,逐步呈现出明显的由沿海向内陆梯度分布的“热点—次热点—次冷点—冷点”的演化格局,表现出较强的稳定性和地带性,地域分布差异显著。3)中国各省级行政区上市公司经营绩效总值的时空演化特征方面呈现由东部沿海向内陆递减的规律,随着时间的推移,中西部地区各省级行政区的上市公司经营绩效总值与东部地区特别是广东省、浙江省、江苏省、北京市、上海市相比,差距进一步扩大,区域发展不平衡问题日益明显。而经营绩效均值的时空演化特征则无明显的规律性。4)中国上市公司绩效外部影响因素中,第一公因子F1经济水平因子是影响我国省级行政区上市公司绩效的首要因素;第二公因子F2发展环境因子,对上市公司经营绩效影响的正向相关性相对于公因子F1来说较小,属于次要因素;第三公因子F3资源禀赋因子不影响省级行政区内上市公司经营绩效。本研究在理论上拓展了上市公司在地理学方面的研究视角,充实了企业地理学、经济地理学、产业经济学等学科的研究内容;实践上,对于正确认识中国上市公司发展规律性及优化产业发展布局提供理论指导和实践借鉴。
[Abstract]:After more than 20 years' development, the listed companies, as the main body of the securities market, have become the leading and engine of the industry and an important strategic support in the national economic development. The operating performance of listed companies directly reflects the level of development of listed companies and the development of China's macro economy. Therefore, we should correctly evaluate the operating performance of listed companies, explore the temporal and spatial evolution characteristics of operating performance of listed companies, and reveal the macro external factors that affect the performance of the listed companies. It is beneficial to the correct understanding and evaluation of the level of economic development in China and the direction of economic development. According to the existing research, this paper preliminarily constructs the performance evaluation index system of listed companies. Using the longitudinal cross-section comparison method, the financial data of the listed companies in 2003, 2008 and 2015 before the opening of the gem are taken as the research samples. With the help of the spatial analysis tools of GeoDa and ArcGIS, this paper analyzes the spatial distribution characteristics and spatial autocorrelation of Chinese listed companies' performance in different periods, and finds the evolution trend. Based on the cross section data of 2015, the multivariate linear regression analysis is carried out to reveal the external factors that affect the operating performance of listed companies. The research results show that the number of Chinese listed companies has been increasing year by year since 2003, and the increase has been increasing year by year since 2009. The growth range of listed companies has obvious regional differences, the "valley area" of the increase is concentrated in the northeast, southwest, northwest and so on, and the internal distribution is very uneven, and the "peak area" of the increase is concentrated in the eastern region. At present, most of the listed companies in China are concentrated in the eastern coastal areas. In terms of categories, listed companies in the eastern region are mainly capital-intensive and technology-intensive enterprises; in the central and western regions, resources and energy enterprises are the main ones; in the overall view, the listed companies in the eastern region are mainly capital-intensive and technology-intensive enterprises. The spatial distribution of listed companies in China is obviously different and the degree of development is uneven, showing "Matthew effect". 2) the spatiotemporal distribution of Chinese listed companies' operating performance has significant spatial autocorrelation. Tending to the spatial correlation between high value agglomeration and low value agglomeration, the evolution pattern of "hot spot, sub-cold point and cold point", which is gradually distributed from coastal to inland gradient, shows strong stability and zonality. The spatial and temporal evolution characteristics of the total operating performance of listed companies in each provincial administrative region of China show the law of decreasing from the eastern coast to the inland, with the passage of time, Compared with the eastern regions, especially Guangdong Province, Zhejiang Province, Jiangsu Province, Beijing and Shanghai, the gap between the listed companies in the central and western regions is further widened, and the imbalance of regional development is becoming more and more obvious. However, the temporal and spatial evolution of the average operating performance has no obvious regularity. 4) among the external factors affecting the performance of listed companies in China, the first factor, F1 economic level factor, is the primary factor affecting the performance of listed companies in the provincial administrative regions of China. The second common factor F2 development environment factor, to the listed company management performance influence positive correlation is relatively small compared with the public factor F1, belongs to the secondary factor; The third common factor F 3 resource endowment factor does not affect the performance of listed companies in provincial administrative regions. This study theoretically expands the perspective of geography of listed companies and enriches the research contents of enterprise geography, economic geography, industrial economics and so on. It provides theoretical guidance and practical reference for correctly understanding the development regularity of Chinese listed companies and optimizing the layout of industrial development.
【学位授予单位】:安徽师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:F832.51;F275
【参考文献】
相关期刊论文 前10条
1 左元丽;;基于因子分析的制造业上市公司综合绩效评价——以江苏制造业上市公司为例[J];会计之友;2016年24期
2 王广生;;基于数据包络分析方法(DEA)的电商行业上市公司效率研究[J];西华大学学报(哲学社会科学版);2016年01期
3 王艳;;EVA在我国寿险上市公司业绩评价中的应用[J];商业会计;2015年18期
4 杨楠;;资本结构、技术创新与企业绩效——基于中国上市公司的实证分析[J];北京社会科学;2015年07期
5 肖龙阶;桑晓鹏;;江苏省民营上市公司资本结构与绩效关系的实证研究[J];东南大学学报(哲学社会科学版);2015年03期
6 陈莹莹;;杜邦分析法在上市公司财务分析中的应用[J];北方经贸;2015年05期
7 杨枰;杨迪斐;;中国房地产上市公司绩效研究——基于四大影响因素的多元线性回归分析[J];经营管理者;2015年11期
8 蔡永灿;燕飞;;股权结构、高管激励与公司绩效实证研究——来自我国上市房地产公司的数据[J];现代商贸工业;2015年08期
9 王静;张悦;;资本结构与盈利能力的关系分析——基于房地产行业上市公司的实证[J];东岳论丛;2015年02期
10 魏伟;;基于多元线性回归分析的高管薪酬与房地产上市公司业绩相关性研究[J];科技广场;2014年09期
相关博士学位论文 前1条
1 孙奕驰;上市公司财务绩效评价及其影响因素研究[D];辽宁大学;2011年
相关硕士学位论文 前8条
1 王天华;我国央企上市公司 EVA 绩效评价[D];北京交通大学;2016年
2 周沫;我国上市银行经营绩效评价研究[D];山东财经大学;2016年
3 张坤;基于数据包络分析的西北地区上市公司财务状况评价与预警模型研究[D];西北民族大学;2015年
4 张文娟;基于上市公司经营业绩评价的杜邦分析体系改进研究[D];长安大学;2014年
5 林筱;平衡计分卡在高速公路上市公司绩效管理中的应用研究[D];长安大学;2014年
6 王娜;基于BSC的纺织上市公司战略绩效评价研究[D];西安工程大学;2013年
7 王森;基于平衡计分卡的我国上市公司绩效评价研究[D];西安建筑科技大学;2009年
8 吴炜伟;基于DEA的房地产上市公司绩效评价模式研究[D];浙江大学;2008年
,本文编号:1947956
本文链接:https://www.wllwen.com/jingjilunwen/touziyanjiulunwen/1947956.html