当前位置:主页 > 经济论文 > 信息经济论文 >

面向移动互联网信息服务的用户行为研究

发布时间:2018-09-09 09:50
【摘要】:近年来,我国互联网结构发生了翻天覆地的变化,移动互联网用户规模不断增长,移动互联网更加受到人们的青睐。在技术及用户群体迅猛发展的同时,移动互联网企业日益面临着激烈的外部竞争和复杂的内部运营环境。移动互联网具有快速传播的特性,相同业务、服务的用户所获取的信息内容成同质化趋势明显。而传统的面向互联网信息服务的用户行为研究方法已经不太适合移动互联网碎片化、宽带化的新特征。因此,在海量数据和信息分享的背景下,移动互联网信息服务如何吸引用户、方便用户快速获取有效信息成为目前学术界和理论界研究的重点和难点。本文沿着“理论溯源和文献综述——移动互联网信息服务用户的特征与偏好分析——移动互联网信息服务用户兴趣分析——移动互联网信息服务用户分享行为分析”这条基本思路展开相关研究。本文以移动互联网用户行为相关理论为基础,在前人研究的基础上,界定了面向移动互联网用户行为的内涵与范畴,通过几种用户行为分析方法的对比和选择,对面向移动互联网信息的用户行为进行研究。本文从用户购前的特征和偏好分析、用户购中过程的兴趣分析、用户购后的分享行为分析的三个逻辑主线展开梳理与论证,主要研究以下内容:(1)从在线视角对移动互联网信息服务用户行为的特征进行研究,以移动客户端新闻资讯为例分析移动互联网信息服务的用户浏览模式进行分析,借助网络爬虫采集百度、腾讯、网易等新闻客户端的新闻资讯,对用户点击新闻的概率分布进行统计分析;(2)从线下视角通过聚焦访谈法和运营商后台数据库采集移动用户数据,利用计量经济方法构建了移动互联网用户行为偏好分析的离散选择模型,通过对用户行为进行细分,找出影响用户信息服务偏好的关键因素,对面向移动互联网信息服务的用户行为特征进行分析。(3)运用联合分析方法,通过设计联合分析问卷并采集数据,研究移动互联网信息服务的不同特征对用户偏好的影响。(4)在面向移动互联网信息服务用户特征及偏好分析的基础上,充分考虑数据可获得性等因素,以移动微博为例,构建面向移动互联网信息服务的用户兴趣模型,并通过实验分析了影响移面向动互联信息服务的用户兴趣的相关因素。(5)最后,从用户分享的视角出发,建立面向移动信息服务的用户分享机制,通过数据挖掘的方法研究了面向移动信息服务的用户分享特征,并通过案例和数据分析,验证了该模型的科学性和有效性。本文通过研究得到以下结论:(1)首先,归纳梳理国内外在移动互联网信息服务和移动互联网用户行为领域的相关研究成果;(2)在梳理前人研究的基础上,通过在线移动网页浏览数据分析移动互联网信息服务用户阅读模式,研究发现用户在使用移动互联网信息服务时,浏览界面的设置对用户选择行为有着明显的影响;(3)其次,运用计量经济分析方法,构建面向移动互联网信息服务用户行为特征的离散选择模型。研究发现,网络速度、易用性、使用成本、是否满足自身多元化需求等变量会对移动互联网信息服务用户使用意愿产生显著影响;(4)接着从移动互联网用户行为特征的结论入手,继续分析了面向移动互联网用户行为的偏好,通过定性分析识别主流App的关键属性,归纳形成服务个性化、内容丰富度、画面清晰度、使用成本等6个关键属性维度,并运用联合分析法对面向移动互联网信息服务的六个属性维度的相对重要性进行排序,同时完成对各个属性维度的用户效用估计;(5)再次,从基于面向移动互联网信息服务的六个属性维度的视角出发,通过采集移动客户端数据,构建面向移动信息服务的用户兴趣模型,挖掘移动信息服务用户的兴趣点,归纳整合用户的兴趣特征,完成对传统的LDA模型的改进,提出了一种从网络数据中提取用户真正兴趣点的新方法。(6)最后,结合用户行为特征和偏好、用户兴趣的研究结论,通过抓取移动微博数据,运用数据挖掘手段构建了面向移动互联网信息服务的用户分享机制,实现对用户分享行为的分析,总结了影响用户分享的关键因素,并通过模拟实验验证了该模型的科学性和有效性,为互联网信息服务企业实现精准营销提供理论和实践指导。基于此,本文的创新点如下:(1)创新点一:提出了移动互联网信息服务用户行为特征研究的分析框架。通过移动互联网用户浏览模式、用户特征、和用户偏好分析三个层面的研究,构建了面向移动互联网用户行为研究的分析框架。该分析框架由移动互联网信息服务用户浏览模式、基于离散选择的移动互联网用户特征模型和基于联合分析法的移动互联网用户偏好模型构成,通过数据分析得出了不同服务特征属性对用户接受的影响重要程度存在不同的相关结论,为移动互联网信息服务商提升产品质量提供改进指导,体现了该分析框架的科学性和有效性。(2)创新点二:建立了面向移动互联网信息服务的用户兴趣模型。在对国内外相关研究的分析梳理的基础上,从用户产生兴趣并进行购买的行为入手,重点围绕移动网信息服务用户的行为兴趣展开研究,通过构建移动互联网信息服务用户行为的兴趣模型,研究了引起用户选择移动互联网信息服务兴趣的关键因素,提出了一种从面向移动互联网用户发布、转发、回复评论的角度去提取用户真正兴趣点的新方法。(3)创新点三:构建了面向移动互联网信息服务的用户分享机制。通过在线信息传播关系图谱的研究和分析,提取了移动互联网用户的文本属性特征,并利用数据挖掘方法对用户行为中分享行为进行研究,分析了面向移动互联网信息服务用户特征、兴趣与用户转发、分享之间的传导机制,以及用户行为各个属性之间的相互关系,总结了影响移动互联网信息服务用户分享行为的关键因素,并通过实验验证了该机制的科学性,从而对移动互联网信息服务和内容服务企业的精准信息服务推送和营销起到了实际的指导作用。综上所述,本文沿着从用户行为特征与偏好——用户兴趣研究——用户分享行为研究的研究主线与框架,在前人研究的基础上,构建了一个面向移动互联网信息服务的用户行为分析框架,形成了一系列的研究结论与成果,在一定程度上丰富了移动互联网用户行为的分析理论和框架,对移动互联网信息服务商和内容提供商的精准营销和信息服务的精准推送起到了重要的指导作用。
[Abstract]:In recent years, China's Internet structure has undergone tremendous changes, the scale of mobile Internet users continues to grow, mobile Internet is more popular. With the rapid development of technology and user groups, mobile Internet enterprises are increasingly facing fierce external competition and complex internal operating environment. With the characteristics of rapid propagation, the same service, the users of the service get the same information content. However, the traditional user behavior research methods for Internet information services are not suitable for the new characteristics of mobile Internet fragmentation and broadband. Therefore, in the context of massive data and information sharing, the mobile Internet. How information service attracts users and facilitates users to obtain effective information quickly has become the focus and difficulty of current academic and theoretical research.This paper follows the "theoretical traceability and literature review-analysis of characteristics and preferences of users of mobile Internet information Service-Analysis of users'interests of mobile Internet information service-mobile interconnection" This paper defines the connotation and category of user behavior oriented to mobile Internet based on the theory of user behavior related to mobile Internet, and compares and chooses several user behavior analysis methods to face mobile interaction. This paper studies the user behavior of networked information. This paper combs and demonstrates the three main logic lines of user behavior analysis: pre-purchase characteristics and preference analysis, user interest analysis in the process of purchasing, and user sharing behavior analysis after purchasing. The main research contents are as follows: (1) Research the characteristics of user behavior of mobile Internet information service from the online perspective. This paper takes the news information of mobile client as an example to analyze the user browsing mode of mobile Internet information service, collects news information from news clients such as Baidu, Tencent and Netease by means of web crawler, and makes statistical analysis on the probability distribution of users clicking on news; (2) from the offline perspective through focused interviews and operator background. The database collects mobile user data and constructs a discrete choice model for mobile Internet user behavior preference analysis by econometric method. By subdividing the user behavior, the key factors affecting user information service preference are found out. The user behavior characteristics of mobile Internet information service are analyzed. (3) The use of coalition. By designing a joint analysis questionnaire and collecting data, this paper studies the impact of different characteristics of mobile Internet information services on user preferences. (4) Based on the analysis of user characteristics and preferences of mobile Internet information services, the factors such as data availability are fully considered. Taking mobile microblog as an example, mobile Internet-oriented service is constructed. Finally, from the perspective of user sharing, a user sharing mechanism for mobile information service is established, and the user sharing feature for mobile information service is studied by data mining method. This paper draws the following conclusions: (1) First of all, it summarizes the relevant research results in the field of mobile Internet information services and mobile Internet user behavior at home and abroad; (2) on the basis of combing previous studies, through online mobile web pages. Browse data analysis mobile Internet information service user reading mode, research found that users in the use of mobile Internet information services, browsing interface settings have a significant impact on user choice behavior; (3) Secondly, using econometric analysis method, the construction of mobile Internet information service user behavior characteristics oriented to discrete choice model It is found that the network speed, ease of use, cost of use, whether to meet their own diversified needs and other variables will have a significant impact on users'willingness to use mobile Internet information services; (4) Starting with the conclusion of mobile Internet users' behavior characteristics, this paper continues to analyze the preferences for mobile Internet users'behavior, through qualitative classification. This paper analyzes and identifies the key attributes of mainstream App, and summarizes six key attributes dimensions, such as service personalization, content richness, picture sharpness, use cost, etc. (5) Thirdly, from the perspective of six attribute dimensions of mobile Internet information service, the user interest model for mobile information service is constructed by collecting mobile client data, mining user interest points of mobile information service, summarizing and integrating user interest characteristics, and improving the traditional LDA model is proposed. A new method of extracting users'real interest points from network data. (6) Finally, combined with user behavior characteristics and preferences, user interest research conclusions, by grasping mobile micro-blog data, using data mining tools to build a user sharing mechanism for mobile Internet information services, to achieve user sharing behavior analysis, summary. The key factors affecting user sharing are analyzed, and the simulation experiments verify the validity and scientificity of the model, which provides theoretical and practical guidance for Internet information service enterprises to achieve precise marketing. A framework for mobile Internet user behavior research is constructed through three levels of research: mobile Internet user browsing pattern, user characteristics and user preference analysis. The composition of mobile Internet user preference model based on the combined analysis method is analyzed. The results show that different service attributes have different impacts on user acceptance. It provides guidance for mobile Internet information service providers to improve product quality and reflects the scientificity and effectiveness of the analysis framework. (2) Innovation. Point 2: This paper establishes a user interest model for mobile Internet information service. Based on the analysis and combing of relevant research at home and abroad, this paper starts with the behavior of users'interest and purchasing, focusing on the behavior interest of users of mobile Internet information service, and constructs the user behavior of mobile Internet information service. Interest model is used to study the key factors that arouse users'interest in choosing mobile Internet information services. A new method is proposed to extract users' real interest points from the point of view of publishing, forwarding and replying comments for mobile Internet users. (3) Innovation point 3: A user sharing mechanism for mobile Internet information services is constructed. The research and analysis of online information dissemination relationship atlas extracts the text attributes of mobile Internet users, and uses data mining method to study the sharing behavior in user behavior. It analyzes the user characteristics of mobile Internet information service, the transmission mechanism between interest and user forwarding, sharing, and user behavior. This paper summarizes the key factors influencing the sharing behavior of mobile Internet information service users, and verifies the scientificity of the mechanism through experiments, thus providing practical guidance for the precise information service delivery and marketing of mobile Internet information service and content service enterprises. Based on previous studies, this paper constructs a user behavior analysis framework for mobile Internet information services, and forms a series of research conclusions and achievements, which enrich the mobile Internet to a certain extent. The analysis theory and framework of network user behavior play an important role in guiding the precise marketing and information service delivery of mobile Internet information service providers and content providers.
【学位授予单位】:北京邮电大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:F49

【相似文献】

相关期刊论文 前10条

1 邓菊丽;网上往来别触法网《互联网信息服务管理办法》公布施行[J];城市技术监督;2000年12期

2 ;国务院公布互联网信息服务管理办法[J];工商行政管理;2000年20期

3 ;互联网信息服务管理办法[J];通信世界;2000年S5期

4 ;中国颁布实施《互联网信息服务管理办法》[J];企业技术开发;2000年12期

5 ;国务院公布《互联网信息服务管理办法》[J];邮电商情;2000年19期

6 黄晓梅;我国无线互联网信息服务发展探析[J];情报杂志;2005年01期

7 胡磊;;我国互联网信息服务自律存在的问题及对策研究[J];情报杂志;2010年02期

8 ;互联网信息服务规范出台 净化网络服务环境[J];石油工业计算机应用;2012年01期

9 ;新版《互联网信息服务管理办法》征求意见稿公布[J];计算机安全;2012年06期

10 ;互联网信息服务管理办法[J];网络与信息;2000年11期

相关会议论文 前6条

1 ;互联网信息服务管理办法[A];网络与反邪教——中国反邪教协会第十次报告会暨学术讨论会论文集[C];2004年

2 武小年;周胜源;;数据挖掘在用户行为可信研究中的应用[A];第十一届保密通信与信息安全现状研讨会论文集[C];2009年

3 樊旺斌;刘正捷;陈东;张海昕;;博客服务系统用户行为研究——用户访谈[A];第二届和谐人机环境联合学术会议(HHME2006)——第2届中国人机交互学术会议(CHCI'06)论文集[C];2006年

4 张书娟;董喜双;关毅;;基于电子商务用户行为的同义词识别[A];中国计算语言学研究前沿进展(2009-2011)[C];2011年

5 曹建勋;刘奕群;岑荣伟;马少平;茹立云;;基于用户行为的色情网站识别[A];第六届全国信息检索学术会议论文集[C];2010年

6 李海宏;翟静;唐常杰;李智;;基于用户行为挖掘的个性化Web浏览器原型[A];第十九届全国数据库学术会议论文集(技术报告篇)[C];2002年

相关重要报纸文章 前10条

1 本报记者 周小游;规范互联网信息服务[N];贵阳日报;2008年

2 ;浙江管局规范互联网信息服务管理[N];通信产业报;2002年

3 记者 方强 范毅;河南补办互联网信息服务手续[N];人民邮电;2000年

4 电信研究院政策经济所 许长帅;明确互联网信息服务规则[N];人民邮电;2012年

5 晓明;加强互联网信息服务管理[N];中国电子报;2005年

6 刘伟;山东管局规范互联网信息服务[N];人民邮电;2006年

7 许爱玲 刘伟;山东:规范互联网信息服务初见成效[N];人民邮电;2006年

8 柳丝丝;净化网络乃当务之急[N];中国民族报;2004年

9 陈海涛;如何完善互联网信息服务审批管理?[N];通信产业报;2003年

10 武雅明;山西开展信息服务整治[N];人民邮电;2002年

相关博士学位论文 前6条

1 胡庆平;面向移动互联网信息服务的用户行为研究[D];北京邮电大学;2017年

2 蒋朦;社交媒体复杂行为分析与建模[D];清华大学;2015年

3 陈亚睿;云计算环境下用户行为认证与安全控制研究[D];北京科技大学;2012年

4 张亚楠;基于用户行为的信任感知推荐方法研究[D];哈尔滨工程大学;2014年

5 杨悦;基于网络用户行为的搜索排行榜研究[D];北京交通大学;2013年

6 阳德青;面向社会网络的用户行为挖掘与应用研究[D];复旦大学;2013年

相关硕士学位论文 前10条

1 王鹤;柑橘移动互联网信息服务系统的设计与实现[D];华中农业大学;2013年

2 吕强;基于云用户行为的可信评估模型[D];河北大学;2015年

3 孙超;基于用户行为和关系的内部风险分析[D];山东大学;2015年

4 王文钊;基于用户行为的农业信息云平台统一身份认证技术研究[D];河北农业大学;2015年

5 栾春晔;基于用户行为的图书馆导向系统设计研究[D];山东大学;2015年

6 马如林;基于内容和用户行为的社交平台反作弊系统的设计与实现[D];哈尔滨工业大学;2015年

7 马聪;基于用户行为挖掘的情景感知推荐[D];浙江大学;2015年

8 卫俊儒;基于线性阀值模型在在线社会网络中用户行为的分析及研究[D];云南财经大学;2015年

9 杨磊;基于网络中用户行为的数据挖掘系统设计与实现[D];河北科技大学;2014年

10 黄丽仪;基于用户行为的旧物捐赠APP设计研究[D];西南交通大学;2016年



本文编号:2232035

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/xxjj/2232035.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a5c2a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com