趋势周期分解理论与我国经济的周期
[Abstract]:The economic cycle phenomenon appearing alternately between expansion and contraction in the market economy has always been the focus of macroeconomics. Since Keynes, every macroeconomic school that has appeared successively is trying to create new theories to explain the economic cycle. How to evaluate these competing theories has become macro economics. The main content of the study. The empirical research based on the macroeconomic statistics is the main method to evaluate the economic cycle theory, and the premise of these empirical studies is to extract the periodic components in the macro-economic data. This is the focus of this article, that is, the trend cycle decomposition method in.2004 years. Research in the field has gradually increased, but it is still in the stage of application of various decomposition methods.
This paper divides the trend periodic decomposition method into the single variable decomposition method and the multivariable decomposition method according to the different methodology, and the former can also be subdivided into the method based on probability theory and the filtering method. The structure of this paper is also arranged accordingly. The main contents and innovations of this paper are summarized as follows.
In the field of univariate trend periodic decomposition, this paper has the significance of theoretical innovation. In view of the "anti sign" problem of the periodic component of BN decomposition, which has not been thoroughly solved at present, the research is carried out from the perspective of methodology, and the quantitative relationship between this phenomenon and the persistence metric is established. The persistence of the difference ratio is more than 1, which indicates that the sequence has a strong persistence, and the "anti sign" problem of the periodic component will appear, otherwise it will not appear. This result shows a relatively clear theoretical innovation. This paper also finds that the periodic component of the unobservable component model also has the "anti sign" question. The above two aspects of theoretical research are the first time in the trend cycle decomposition field.
On the basis of analyzing the methodology of single variable decomposition, this paper aims at the periodic, stability, timeliness and consistency criteria of the decomposition of the decomposition, and evaluates the various decomposition methods. The periodic concern is whether the periodic component of the decomposition is in accordance with the economic cycle that needs to be considered. After adding new observation values, the degree of the periodic component of the latest decomposition deviates from the previous periodic component. The time is concerned that the end value of the periodic component of the decomposition can accurately reflect the status of the variable. The study of the actual GDP variables in the country shows that the CF filter is relatively suitable for extracting its periodic components. From the perspective of comparative study, the standards proposed in this paper can better evaluate various decomposition methods, thus the empirical decomposition is similar to the theoretical basis of the macro data provision, which is similar to our country's GDP, thus reflecting the creation of theory and application. New meaning.
In the field of trend periodic decomposition, multivariable decomposition is the most frontier and the most difficult research direction. This paper traces the main research literature and clearly interprets and expresses its development and decomposition theory from the perspective of methodology. From the literature, so far, there is no relevant research work in this field at home. In particular, the multivariable trend periodic decomposition is based on the non stationary time series theory. After considering the interaction between the various trends and the interaction between each cycle, the multivariable decomposition method is taken into account. The theory of sequence related common feature proposed by Engle and Kozicki (1993) is used to study the interaction between multiple cycles. On this basis, the trend periodic decomposition of multivariables is realized by the VEC model containing cointegration and sequence related common characteristic constraints. On the basis of the study of the multivariable decomposition methodology, this paper is present to our country. The study of real economic problems is applied. According to the study of the monetary and economic operation and the price level, the monetary factor plays an important role in the economic cycle. The supply of money is the first indicator of the economic operation. The research on the price and inflation of agricultural products shows the phase of the price cycle of agricultural products and the CPI cycle. The large fluctuations in the price cycle of agricultural products, to a large extent, are the impact of factors such as the rise and fall of the price of pork, and the strong dependence of the monetary cycle with the CPI cycle shows that the monetary policy goal of our country is alternately converted between inflation and growth. Accordingly, the price of the agricultural product is also given in the price of agricultural products. In the rising period of the grid cycle, inflation control should be guided by the policy of restraining the prices of agricultural products from the supply side.
To sum up, the innovation of the theory and methodology of this paper can be summarized as the study of the "anti sign" problem of the periodic components of the BN decomposition and the UC model decomposition method, and the evaluation of various single variable decomposition methods through the establishment of evaluation criteria. The application innovation is embodied in the new multivariable trend periodic decomposition of this measure. The economic method, from the point of view of important but not fully paid attention to, studies the problems of economic operation and inflation in China, and draws realistic conclusions and policy suggestions with practical value.
【学位授予单位】:华中科技大学
【学位级别】:博士
【学位授予年份】:2013
【分类号】:F224;F124.8
【相似文献】
相关期刊论文 前10条
1 李兴绪;李时兴;;能源消费与经济增长关联特征的分解分析[J];云南财经大学学报;2008年05期
2 王明利;李威夷;;生猪价格的趋势周期分解和随机冲击效应测定[J];农业技术经济;2010年12期
3 朱玉成;沪帮裁缝[J];上海工艺美术;1997年01期
4 陈颖涛;国有企业经营趋势周期的实证分析[J];数量经济技术经济研究;2002年02期
5 刘金全,刘志刚;我国GDP增长率序列中趋势成分和周期成分的分解[J];数量经济技术经济研究;2004年05期
6 刘东红;;河南省经济增长的趋势变化与波动分析[J];经济研究导刊;2011年29期
7 周建;;基于随机方差扩大模型的对中国宏观经济统计数据的结构变化分析[J];中国管理科学;2006年03期
8 谢富华;徐莉莉;;底部探明 买入股票型基金[J];证券导刊;2009年42期
9 唐丽佳;;我国房地产市场的价格动态研究[J];商业文化(上半月);2011年04期
10 许刘俊,张汉昌,梁志荣,廖志芳,陈洁玲;一种测度广东经济周期波动的模型[J];统计与预测;1996年06期
相关会议论文 前7条
1 邓澄;;径流的一致性分析——以新疆额尔齐斯河为例分析研究[A];中国水力发电工程学会水文泥沙专业委员会第七届学术讨论会论文集(下册)[C];2007年
2 王忠彦;胡林金;张明煊;刘景时;;喀喇昆仑山叶尔羌河50年来水资源演变特征[A];青藏高原资源·环境·生态建设学术研讨会暨中国青藏高原研究会2007学术年会论文摘要汇编[C];2007年
3 廖福元;;基于经验模式分解的非平稳信号趋势检测方法[A];第六届全国信息获取与处理学术会议论文集(3)[C];2008年
4 王书平;李建平;高丽君;赵茜;;标准X-11方法及国际原油价格季节性波动分析[A];现代工业工程与管理研讨会会议论文集[C];2006年
5 郑祚芳;张秀丽;曹鸿兴;谢庄;潘家华;;用去趋势涨落分析研究北京气候的长程变化特征[A];2008年北京气象学会科技优秀论文集[C];2008年
6 谢平;陈丽;唐亚松;胡彩霞;;变化环境下基于非线性趋势分析的干旱评价方法[A];变化环境下的水资源响应与可持续利用——中国水利学会水资源专业委员会2009学术年会论文集[C];2009年
7 钟水映;李魁;;东亚地区工业化、城镇化与农地非农化的协动性研究[A];节约集约用地及城乡统筹发展——2009年海峡两岸土地学术研讨会论文集[C];2009年
相关重要报纸文章 前5条
1 国泰君安 姜超;将3年期左右债券作为核心配置[N];中国证券报;2008年
2 大摩投资 徐胜治;牛熊转换 市场开打资源争夺仗[N];证券日报;2006年
3 大摩投资 徐胜治;长期转折发端 短期震荡盘整[N];证券日报;2006年
4 东方趋势 赵笑云;中级行情呼之欲出[N];福建工商时报;2001年
5 水皮;胳膊再粗拧不过大腿 [N];中华工商时报;2002年
相关博士学位论文 前6条
1 孙晓涛;趋势周期分解理论与我国经济的周期[D];华中科技大学;2013年
2 刘俊生;我国经济周期波动的测定和分析[D];吉林大学;2007年
3 李庆华;我国经济周期阶段性和波动性的动态计量研究[D];吉林大学;2008年
4 王金明;我国转轨时期经济周期波动的特征分析及监测方法的应用研究[D];吉林大学;2006年
5 许斌;变化环境下区域水资源变异与评价方法不确定性[D];武汉大学;2013年
6 杨淑霞;中国电力需求周期演变规律及转折点研究[D];华北电力大学(河北);2006年
相关硕士学位论文 前10条
1 唐敏;中国实际GDP的趋势及周期成分分解[D];华中科技大学;2011年
2 孟彩侠;基于不同方法的和田绿洲水循环要素变化特征研究[D];西安理工大学;2006年
3 朱文金;数据预处理在预测模型中的应用[D];兰州大学;2010年
4 马亚男;股票收益率与通货膨胀率的关联性研究[D];吉林大学;2008年
5 陈楠楠;城域网应用层VoIP流量的建模与预测研究[D];湖南大学;2009年
6 赵文胜;投机性短期国际资本流动对中国经济影响的实证研究[D];吉林大学;2009年
7 夏冰莹;证券市场资产价格的动力学关联性研究[D];南京信息工程大学;2012年
8 王娜娜;我国固定资产投资周期与经济周期波动的关联性研究[D];吉林大学;2007年
9 卿山凤;企业价值评估中现金流量的模拟分析[D];西南交通大学;2005年
10 翟子钧;基于时间序列的我国钢材以及有色金属供给量分析[D];中国人民大学;2008年
,本文编号:2120417
本文链接:https://www.wllwen.com/jingjilunwen/zhongguojingjilunwen/2120417.html