城市主干线协调控制子区划分技术研究
本文关键词: 交通工程 控制子区划分 信号协调控制 遗传算法 CORSIM微观仿真 出处:《大连理工大学》2016年硕士论文 论文类型:学位论文
【摘要】:随着我国经济日益发展,人民生活水平不断提高,汽车保有量急剧增长,交通系统的供需矛盾日益凸现,交通拥堵成为我国社会面临的最严峻难题之一。优化城市交叉口的信号控制是解决交通拥堵行之有效的方法之一。干线协调控制对干线上的信号灯组同时进行配时优化,进一步提高了信号控制的效率,因此被广泛应用于城市交通控制实践中。然而现有的线控信号灯协调配时方法多局限于有限的道路规模,如5-6个信号交叉口。随着城市规模的不断扩大,很多城市的主干线不再局限于这个规模,而是更多,如15-20个交叉口。如果直接对所有的信号灯一齐进行协调配时,所得的双向绿波带宽度也许会很小,有时甚至得不到双向绿波。因此,有必要先对干线进行合理的分段,然后对每个分段进行协调配时优化,以提高城市干线总体的协调控制效果,即所谓的子区划分技术。传统的干线协调控制子区划分技术或是基于高度的经验建立子区划分指标,或是采用启发式算法搜索可行的划分方案,因此难以得到理想的协调控制子区划分方案,无法确保子区良好的协调控制效果。本文基于经典的MAXBAND模型,考虑子区控制效率公共信号周期以及子区内信号灯的连续性,通过引入若干组二进制变量建立了两个协调控制子区划分模型—最大化绿波宽度和最小化各协调控制子区直行车辆车均绿波时间差异。采用遗传算法求解模型,并利用CORSIM仿真对比分析三种流量场景下由本文模型和Synchro所优化的方案的控制效果,以验证模型的可行性与有效性。优化与仿真结果表明:一般而言,随着子区划分数量的增加,干线绿波时间随之增加,控制子区内直行车辆的平均停车率也会相应地降低,但随之增加的非协调路段会更频繁的打断行驶车队,从而无法保证直行车辆的平均停车率在干线层面上表现出上述特点;虽然本文所建立的模型具有不同的目标函数,但是所优化的方案具有基本类似的控制效果,且相比于Synchro优化的方案,本文模型优化方案能够显著提高平均子区带宽有效率,同时也具有更优的车均延误与停车率等运行指标。本文建立的模型是可行且有效的,能够为理论研究与实际工程运用提供理论基础与参考价值,丰富了子区划分技术的研究思路与方法。
[Abstract]:With the development of our country's economy, people's living standard is improving, the quantity of automobile is increasing rapidly, and the contradiction between supply and demand of transportation system is becoming more and more obvious. Traffic congestion has become one of the most severe problems facing our society. Optimizing the signal control of urban intersections is one of the effective methods to solve traffic jams. Time optimization. It improves the efficiency of signal control, so it is widely used in urban traffic control practice. However, most of the existing coordinated timing methods of line-controlled signal lights are limited to a limited road scale. For example, 5-6 signalized intersections. With the continuous expansion of the city size, the main lines of many cities are no longer limited to this scale, but more. For example, 15-20 intersections. If all the signals are coordinated directly, the width of the bidirectional green band may be very small, sometimes not even bidirectional green wave. It is necessary to segment the trunk line reasonably and then optimize each segment in order to improve the overall coordination and control effect of urban trunk line. The traditional sub-area partition technique of coordinated control of trunk line is either based on height experience to establish sub-area division index or to use heuristic algorithm to search feasible partition scheme. Therefore, it is difficult to obtain an ideal subarea partition scheme of coordinated control, and can not ensure a good coordinated control effect. This paper is based on the classical MAXBAND model. The common signal period of sub-area control efficiency and the continuity of the sub-area signal lamp are considered. By introducing a number of binary variables, two models of division of coordinated control subareas are established, i.e., maximizing the width of green waves and minimizing the difference of green wave time between vehicles in each coordinated control area. The genetic algorithm is used to solve the model. CORSIM simulation is used to compare and analyze the control effect of the three flow scenarios optimized by the model and Synchro. In order to verify the feasibility and effectiveness of the model, the optimization and simulation results show that: generally speaking, with the increase of the number of sub-areas, the green wave time of trunk lines increases. The average parking rate of direct vehicles in the control sub-area will also decrease correspondingly, but the increase of uncoordinated sections will interrupt the motorcade more frequently. Thus, it is impossible to ensure that the average parking rate of the direct vehicle shows the above characteristics on the trunk line level. Although the model established in this paper has different objective functions, the optimized scheme has a similar control effect, and compared with the Synchro optimization scheme. The model optimization scheme in this paper can significantly improve the efficiency of the average sub-area bandwidth, but also have better vehicle average delay and parking rate, etc. The model established in this paper is feasible and effective. It can provide theoretical basis and reference value for theoretical research and practical engineering application, and enrich the research ideas and methods of sub-area division technology.
【学位授予单位】:大连理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:U491.54
【相似文献】
相关期刊论文 前10条
1 吴义虎;李狄;喻伟;喻丹;;基于快速疏散控制的城市道路偶发性交通拥堵区域动态界定及控制子区划分[J];长沙理工大学学报;2014年02期
2 邱晓丽;;控制子站稳控装置的功能及运行维护的探讨[J];硅谷;2012年17期
3 卢凯;徐建闽;李轶舜;;基于关联度分析的协调控制子区划分方法[J];华南理工大学学报(自然科学版);2009年07期
4 杨庆芳;陈林;;交通控制子区动态划分方法[J];吉林大学学报(工学版);2006年S2期
5 首艳芳;徐建闽;;基于群体动力学的协调控制子区划分[J];华南理工大学学报(自然科学版);2013年04期
6 尚德申;车广侠;杨敏;;关于控制子区与VMS结合的研究[J];交通标准化;2008年13期
7 尚德申;车广侠;杨敏;;关于控制子区与VMS结合的研究[J];交通标准化;2008年14期
8 王力;陈智;刘小明;李正熙;;基于社区发现的交通控制子区优化方法研究[J];交通运输系统工程与信息;2012年06期
9 段后利;李志恒;张毅;胡坚明;;交通控制子区动态划分模型[J];吉林大学学报(工学版);2009年S2期
10 ;[J];;年期
相关会议论文 前3条
1 景佳;吴宜灿;李国丽;林辉;吴爱东;;MLC静态控制子野划分算法的比较研究[A];第十三届全国核物理大会暨第八届会员代表大会论文摘要集[C];2007年
2 李慧兵;杨兆升;杨晓光;;基于距离+周期原则的控制子区划分研究[A];第二十九届中国控制会议论文集[C];2010年
3 李刚奇;赵娅丽;;基于宏观交通理论的交通控制子区划分方法[A];第七届中国智能交通年会优秀论文集——智能交通技术[C];2012年
相关硕士学位论文 前3条
1 马寒月;基于宏观基本图的路网控制子区划分方法研究[D];合肥工业大学;2016年
2 唐小军;城市主干线协调控制子区划分技术研究[D];大连理工大学;2016年
3 陈晓明;交通控制子区动态划分指标研究[D];吉林大学;2007年
,本文编号:1443940
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/1443940.html