斜交低填大孔径钢波纹管涵土压力分析
本文选题:斜交 + 低填 ; 参考:《西安工业大学》2017年硕士论文
【摘要】:随着我国公路建设的发展,公路等级逐渐提高、公路里程不断延伸,桥涵工程的数量剧增。传统的桥涵结构形式易出现的桥头跳车及因地基的不均匀沉降导致的结构破坏等问题已经严重影响到公路的路用性能;而采用新的材料类型、新的结构形式是解决传统桥涵工程中出现的这些问题的途径之一;其中最具代表性的新型结构形式是钢波纹管涵,因其轴向波纹的存在,使它不仅可以更好地适应地基变形,而且能够较好地分散应力,因此在我国公路工程中逐渐得到广泛应用。钢波纹管涵管周土压力对钢波纹结构的受力影响很大,但目前我国对其研究较少,而对于斜交、低填、大孔径钢波纹管涵土压力的研究尚是空白。本文针对斜交、低填、大孔径三个钢波纹管涵受力不利因素共同组合对其围土压力进行系统分析研究。在对国内外现有的关于钢波纹管涵土压力的计算方法及理论成果进行调查研究的基础上,依托国内首次将斜交、低填、大孔径三个受力不利因素综合应用的实体工程("济南至祁门高速公路安徽省淮南至合肥段")对围土压力测试的实际工况制定了具体的现场测试方案,整理并分析现场所测数据;采用有限元数值模拟的方法对现场的钢波纹管涵洞三种实际工况进行模拟,并且将模拟结果与现场的实测值进行对比,从而论证了有限元数值模拟方法的可行性;最后,通过建立不同斜交角度、不同填土高度、不同孔径大小的合理的涵洞模型,进行有限元数值模拟,归纳总结土压力分布的规律。这将作为新形式的钢波纹管涵设计和施工的参考依据。通过对斜交、低填、大孔径钢波纹管涵野外现场测试可知:填土自管顶至路基顶的过程中,管周和管外侧各测试位置的土压力的变化整体上分为两个阶段:第一阶段为填土自管顶至2.5m(孔径的一半),随路基填土高度的增加管周土压力增幅较小;第二阶段为填土 2.5m至路基顶部,随路基填土高度的增加管周土压力增幅较大。路基完工后在车载工况下,管周土压力的变化幅度从大到小依次为:双车并行、双车顺行、对向行驶、沿管轴行驶。通过对斜交、低填、大孔径钢波纹管涵有限元数值模拟可得:当斜交角度小于75°时,管周土压力随着斜交角度的变化不太明显;随着斜交角度的增大,管周土压力值急剧减小,而管顶垂直于管轴线方向土压力随着角度的增加而增大。管周土压力随着填土高度的增加发生周期性的变化。对于小孔径的钢波纹管涵,管周土压力随着孔径的增大而减小;对于大孔径的钢波纹管涵,管周土压力值随着孔径的增大而增大,但当孔径为6m时土压力值随着孔径的增大而减小。
[Abstract]:With the development of highway construction in China, the grade of highway is gradually improved, the mileage of highway continues to extend, and the number of bridge and culvert projects increases dramatically. The problems of traditional bridge and culvert structure, such as jumping at bridge head and structural damage caused by uneven settlement of foundation, have seriously affected the road performance of highway, and the new material type is adopted. The new structural form is one of the ways to solve these problems in the traditional bridge and culvert engineering, among which the most representative new structural form is the steel corrugated pipe culvert, because of the existence of its axial corrugation, it can not only adapt to the deformation of the foundation better. And it can disperse stress well, so it is widely used in highway engineering in our country. The soil pressure around the corrugated steel pipe has a great influence on the stress of the corrugated steel structure, but there is little research on it in our country at present, but the research on the earth pressure of the steel corrugated pipe culvert with oblique intersection, low filling and large aperture is still blank. In this paper, the confining earth pressure of steel corrugated pipe culvert is systematically analyzed and studied according to the three unfavorable forces of skew, low fill and large aperture steel corrugated pipe culvert. On the basis of investigation and research on the existing calculation methods and theoretical results of soil pressure of steel bellows culvert at home and abroad, relying on the first time in China, the inclined cross, low fill, The solid engineering ("Huainan to Hefei section of Jinan to Qimen Expressway, Anhui Province"), which applies three unfavorable forces to large aperture, has worked out a concrete field test plan for the actual condition of confining earth pressure test, collated and analyzed the field measured data. The finite element numerical simulation method is used to simulate the three actual working conditions of the steel corrugated pipe culvert in the field, and the simulation results are compared with the field measured values, thus demonstrating the feasibility of the finite element numerical simulation method. By establishing a reasonable culvert model with different oblique angles, different filling heights and different pore sizes, finite element numerical simulation was carried out to summarize the distribution of earth pressure. This will be used as a reference for the design and construction of steel bellows culvert. The field test of inclined cross, low fill, large aperture steel bellows culvert shows that the process of filling soil from pipe top to subgrade top, The variation of the earth pressure at the test positions around the pipe and the outside of the pipe is divided into two stages as a whole: the first stage is from the top of the pipe to 2.5 m (half of the pore diameter), with the increase of the height of the embankment filling, the increase of the soil pressure around the pipe is relatively small; The second stage is from 2.5 m to the top of the embankment, with the increase of the soil pressure around the pipe with the increase of the height of the embankment. After the completion of the roadbed, the range of the variation of soil pressure around the pipe is as follows: two cars parallel, two cars running in the opposite direction, and running along the pipe axis after the completion of the roadbed. Through the finite element numerical simulation of inclined cross, low fill, large aperture steel bellows culvert, it can be obtained that when the angle of oblique intersection is less than 75 掳, the variation of soil pressure around pipe with the angle of oblique intersection is not obvious, and with the increase of oblique angle, the value of soil pressure around pipe decreases sharply. The earth pressure increases with the increase of the angle perpendicular to the tube axis. The soil pressure around the pipe changes periodically with the increase of the filling height. For steel corrugated pipe culvert with small aperture, the soil pressure around pipe decreases with the increase of pore diameter, while for steel corrugated pipe culvert with large aperture, the value of soil pressure around pipe increases with the increase of pore diameter. However, when the pore diameter is 6 m, the earth pressure decreases with the increase of pore size.
【学位授予单位】:西安工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U449.83
【参考文献】
相关期刊论文 前10条
1 刘百来;姚德昊;梁养辉;张楠;;涵管直径对钢波纹管涵洞预拱度设置的影响[J];西安工业大学学报;2016年10期
2 芮瑞;吴端正;胡港;徐路畅;夏元友;;模型试验中膜式土压力盒标定及其应用[J];岩土工程学报;2016年05期
3 冯正霖;;我国桥梁技术发展战略的思考[J];中国公路;2015年11期
4 冯忠居;乌延玲;贾彦武;熊山铭;王彦志;;钢波纹管涵洞受力与变形特性模拟试验研究[J];岩土工程学报;2013年01期
5 刘亚萍;马琳;王毅松;;试论金属波纹管涵在公路工程中的应用[J];黑龙江交通科技;2012年01期
6 谭国湖;;钢波纹管涵在软土路基中的应用[J];湖南交通科技;2011年02期
7 张建克;;涵洞及涵洞的施工工艺[J];交通世界(建养.机械);2011年06期
8 骆志红;;大直径钢波纹管涵有限元计算分析[J];交通科技;2011年01期
9 刘成志;;钢波纹管涵洞在公路建设中应用技术分析[J];公路交通技术;2009年04期
10 韩红;;道路涵洞新型施工材料——金属波纹管涵的科学应用[J];黑龙江交通科技;2008年01期
相关会议论文 前1条
1 顾安全;王晓谋;折学森;;上埋式管道及洞室垂直土压力的研究[A];海峡两岸土力学及基础工程地工技术学术研讨会论文集[C];1994年
相关博士学位论文 前2条
1 乌延玲;公路钢波纹管涵洞受力与变形特性及应用研究[D];长安大学;2012年
2 李祝龙;公路钢波纹管涵洞设计与施工技术研究[D];长安大学;2006年
相关硕士学位论文 前10条
1 李清娟;路基边坡坡度与钢波纹管涵预拱度关系的研究[D];西安工业大学;2016年
2 徐伟博;管拱形覆土波纹钢板管涵受力性能试验研究[D];北京交通大学;2015年
3 聂骁隽;多年冻土地区钢波纹管涵洞温度场及受力分析研究[D];重庆交通大学;2015年
4 郭力源;低填方荷载条件下钢波纹板拱桥力学性能研究[D];重庆交通大学;2014年
5 廖鑫;高填土大跨径钢波纹管涵的力学性能与设计方法研究[D];湖南大学;2014年
6 冯丽;考虑土—结相互作用的覆土波纹钢板圆管涵的力学性能分析[D];北京交通大学;2010年
7 张二韶;埋地钢质波纹管土的拱效应研究[D];西安工业大学;2010年
8 粟缤;波纹管涵受力性能数值分析[D];北京交通大学;2009年
9 王彩君;波纹钢低拱涵静力性能研究[D];长安大学;2008年
10 马洪亮;沟槽边坡与地基对涵洞垂直土压力影响的研究[D];太原理工大学;2007年
,本文编号:1826684
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/1826684.html