当前位置:主页 > 科技论文 > 路桥论文 >

高墩大跨预应力混凝土连续刚构桥施工控制研究

发布时间:2018-07-17 17:06
【摘要】:高墩大跨连续刚构桥是一种重要的桥梁形式,一般采用悬臂施工法进行施工。三水河特大桥为咸阳至旬邑高速公路上的一座特大型连续刚构桥,它集超高墩、长联、大跨特征于一身,本文依托该桥梁结构的施工建造,深入现场进行实时施工监测,并根据所凝练的相关问题,对比研究了大量国内、外有关预应力混凝土连续刚构桥的监控资料,利用MIDAS/Civil有限元软件建立数值模拟模型,对该桥梁箱梁梁段的建造、全桥的合龙施工进行了全过程的监控。结果表明:采用悬臂施工法修建的三水河特大桥满足规范《公路桥涵设计通用规范》JTG D600-2004和《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2012要求。具体工作如下:阐述了桥梁施工监测与控制的基本原理,简要评论了目前国内外高墩大跨预应力混凝土连续刚构桥施工监测技术发展的历史与现状。运用MIDAS/Civil软件建立数值模拟模型,对该桥梁结构进行施工控制方面的仿真模拟。求出相应的应力值和挠度值,并与实测的施工监测数据对比以修正相关的模型参数,使之与实际相符,为该种桥梁结构的施工控制提供了理论计算基础。基于施工过程中箱梁的高程变化数据,运用MIDAS有限元模型对数据进行参数识别、分析,继而为下一梁段箱梁的立模标高提供修正依据,以指导施工、建造,结果表明:成桥后梁底线形良好,符合设计要求。为保证箱梁梁体结构材料不发生破坏,对箱梁截面12#墩2#块所采集的应力数据进行分析,实测最大压应力值满足规范要求。结果表明:该梁段在各施工阶段的应力状态均满足设计要求。在日照产生的温度梯度荷载条件下,顶板和底板分别受到压应力和拉应力的作用,最大应力值位于跨中位置。经软件模拟计算,荷载工况组合下(含温度梯度荷载),顶板和底板受到的最大压应力分别为11.4MPa和12.9MPa;12#墩10#块顶板和底板在下午3时受到的最压应力实测值分别为12.84MPa和8.52MPa,均满足规范要求。温度应力对桥梁产生向下的挠度,跨中挠度值为21.7mm。对咸阳地区该类型桥梁箱梁的合理温度梯度进行了研究:通过对该桥梁箱梁进行24小时的温度监控,基于经典热力学理论,建立ANSYS模型,运用瞬态热分析,求出了该桥梁夏季日最不利时刻(15:00)的理论温度场;并将有关温度的理论计算值与实测温度值进行对比,修正、优化计算模型,遂得出适合该地区夏季的混凝土箱梁温度场分布图;与国内、外相关的公路规范对比,结果证明该温度梯度数值模拟模型较为合理。对桥梁合龙施工过程进行了理论分析:对梁段高程,应力应变,温度场进行实时监控;在合龙完成后,通过有限元软件进行分析、验证,结果表明理论计算精度达到预期要求。
[Abstract]:Long span continuous rigid frame bridge with high piers is an important bridge form, which is usually constructed by cantilever construction method. Sanshuihe River Bridge is a super large continuous rigid frame bridge on Xianyang Xunyi Expressway. It combines the features of super high pier, long joint and long span. This paper relies on the construction of the bridge structure to carry out real-time construction monitoring on the spot. According to the condensed problems, the monitoring data of prestressed concrete continuous rigid frame bridge at home and abroad are compared and studied, and the numerical simulation model is established by using Midas / Civil finite element software to construct the box girder section of the bridge. The whole construction of the bridge is monitored and controlled. The results show that the Sanshuihe Bridge constructed by cantilever construction method meets the requirements of the Code < General Design Code of Highway Bridge and culvert > JTG D600-2004 and the Design Code of Highway reinforced concrete and Prestressed concrete Bridge and culvert > JTG D62-2012. The main work is as follows: the basic principle of bridge construction monitoring and control is expounded, and the history and present situation of construction monitoring technology of prestressed concrete continuous rigid frame bridge with high pier and large span are briefly reviewed. A numerical simulation model is established by using Midas / Civil software to simulate the construction control of the bridge structure. The corresponding stress and deflection values are obtained and compared with the measured construction monitoring data to modify the relevant model parameters to make them accord with the actual conditions. This provides a theoretical calculation basis for the construction control of this kind of bridge structure. Based on the elevation variation data of the box girder during construction, the data are identified and analyzed by Midas finite element model, and then the correction basis for the elevation of the next section of box girder is provided to guide the construction and construction. The results show that the bottom line shape of the bridge is good and meets the design requirements. In order to ensure that the structure material of box girder is not destroyed, the stress data collected from section 12 # pier block of box girder are analyzed, and the measured maximum compressive stress value meets the requirements of the code. The results show that the stress state of the section meets the design requirements. Under the condition of temperature gradient load caused by sunlight, the roof and floor are subjected to compressive stress and tensile stress respectively, and the maximum stress is located in the middle of span. Through the software simulation calculation, The maximum compressive stress of roof and floor is 11.4MPa and 12.9MPA / 12# respectively under load condition combination (including temperature gradient load). The measured values of maximum compressive stress of 10# roof and floor are 12.84MPa and 8.52MPa, respectively, which meet the requirements of code. The temperature stress has a downward deflection to the bridge, and the mid-span deflection is 21.7mm. The reasonable temperature gradient of this type of bridge box girder in Xianyang area is studied. By monitoring the temperature of the bridge box girder for 24 hours, based on the classical thermodynamics theory, the ANSYS model is established, and the transient thermal analysis is used. The theoretical temperature field at the most unfavorable day (15:00) of the bridge in summer is obtained, and the theoretical calculation value of the temperature is compared with the measured temperature value, and the calculation model is modified and optimized. The distribution map of temperature field of concrete box girder in summer is obtained, and the numerical simulation model of temperature gradient is proved to be more reasonable compared with the relevant highway codes at home and abroad. The construction process of bridge closure is analyzed theoretically: the beam elevation, stress and strain, and temperature field are monitored in real time; after the closure is completed, the finite element software is used to analyze and verify, the results show that the theoretical calculation accuracy meets the expected requirements.
【学位授予单位】:西安建筑科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U445.4

【参考文献】

相关期刊论文 前10条

1 陈凯旋;高大峰;董旭;路军;;咸阳地区夏季混凝土刚构桥温度梯度分析[J];公路工程;2015年05期

2 杨厚明;徐培蓁;;浅谈预应力混凝土箱梁支架预压技术[J];科技信息;2012年34期

3 陈梦成;顾章川;;多跨连续梁桥跨结构的施工监控技术[J];城市轨道交通研究;2012年05期

4 高大峰;何新成;任禹州;;陕北榆林地区混凝土箱梁温度梯度分析[J];太原理工大学学报;2012年02期

5 郭樟根;孙伟民;彭阳;;预应力砌块砌体预应力损失的试验研究与分析[J];混凝土与水泥制品;2010年04期

6 徐六旺;;福建省南平市西城大桥合龙段顶推施工研究[J];山西建筑;2009年08期

7 张建华;张毅刚;王振清;;大跨度空间结构施工过程力学行为的研究[J];重庆建筑大学学报;2008年04期

8 张明远;卢哲安;刘飞鹏;任志刚;;某大跨预应力混凝土连续梁桥的温度效应分析[J];武汉理工大学学报;2007年02期

9 郑一峰;黄侨;孙永明;;部分斜拉桥合理成桥状态的研究[J];公路交通科技;2006年11期

10 杨雷;张永水;高建;;灰色系统理论在白果渡嘉陵江大桥施工控制中的应用[J];重庆交通学院学报;2006年05期



本文编号:2130327

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2130327.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户9c019***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com