第三系砂泥岩地层隧道施工安全及对策研究
[Abstract]:With the development of national economy and the progress of society, the construction of highway and railway is in the ascendant, so the number of tunnels passing through the Tertiary sand and mudstone strata increases sharply, and its length, cross-section area and buried depth are also increasing. Tunnel construction safety problem is more and more prominent. Whether to the country or the enterprise, the construction safety is always vital. The safety of tunnel construction in sand and mudstone strata is a hot issue in tunnel construction safety both at home and abroad. At present, the overall research level can not meet the construction needs. There are a lot of sand and mudstone stratum tunnels under construction in our country at present, which is helpful to carry out the research and summary of its construction safety and countermeasures. Based on the engineering example of Shuangfeng Tunnel in Musui Line, this paper analyzes and predicts the potential safety hazards, and uses Midas GTS finite element analysis software to carry out the construction simulation, and compares and analyzes the different conditions. The potential safety risks of the tunnel and the countermeasures that should be paid attention to are given. The main conclusions are as follows: (1) through the simulation of tunnel construction process under sand and mudstone geological conditions, the results show that when the first principal stress of surrounding rock is -0.61MPa, the maximum of the third principal stress of surrounding rock is -1.26MPa when the first principal stress of surrounding rock is excavated by using the CD method, The maximum value of the first principal stress of surrounding rock is -0.52MPa, the maximum of the third principal stress of surrounding rock is -1.05MPa, and the maximum value of the first principal stress of surrounding rock is -0.34MPa, and the maximum value of the third principal stress of surrounding rock is -0.68MPa.2 when the three-step excavation method is adopted. The maximum displacement along X direction is 18.5 cm, and the maximum settlement and uplift along Y direction are 16.2cm and 19.0cmrespectively. The maximum displacement along X direction is 15.9 cm, and the maximum settlement and uplift along Y direction are 11.4cm and 14.2 cm. The maximum displacement along X direction is 8.6 cm, and the maximum settlement and uplift along Y direction are 8.1cm and 8.7 cm 路(2) arch. However, the arch is subjected to settlement deformation under the vertical load of surrounding rock. Therefore, the horizontal displacement and vertical settlement of surrounding rock can be controlled by means of strengthening foot locking measures to ensure the safety of construction. (3) the surrounding rock pressure on the right side of the tunnel is basically larger than that on the left side, showing asymmetry, and the lateral pressure of the mountain body is very large. The confining pressure of each measuring point has an increasing tendency. (4) the current maximum stress of steel arch frame occurs at the right arch waist, which is -400.32 MPa, and the measured value of the left and right side is asymmetric, which indicates that the tunnel may be affected by bias pressure, which should be paid attention to in construction. When the steel arch frame is closed, the stress of each observation point is further optimized, the asymmetry decreases gradually, the influence of bias decreases gradually, and the points tend to be stable. (5) the initial contact pressure between the initial support and the second liner increases greatly. The main reason is that the excavation of the front face has a great disturbance to it; then the contact pressure decreases because of the shrinkage and creep of concrete; with the completion of the secondary lining, the contact pressure tends to stabilize gradually. (6) the concrete stress is mostly in the state of compression. The fluctuation in the early stage is mainly caused by the change of the strength of concrete hardening, and then the concrete stress decreases slowly. The main reason is that the secondary lining is completed to form a common force. (7) the secondary lining steel bars are in different stress states, the inner steel bars are mostly in the tensile state, and the outer steel bars are mostly in the state of compression. The small change in the early stage is mainly related to the uneven hardening force of the concrete, and then due to the completion of the second lining, the stress of the reinforcement gradually increases, and the secondary lining begins to bear the deformation of surrounding rock.
【学位授予单位】:兰州交通大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U455
【相似文献】
相关期刊论文 前10条
1 张玉萍;张明;;国内外围岩大变形研究现状[J];新疆有色金属;2013年05期
2 邹太平;;改善隧道注浆工艺促使围岩成环的重要性[J];公路交通科技(应用技术版);2013年11期
3 彭正勇;;三重管旋喷注浆技术在隧道围岩加固中的应用[J];地下空间与工程学报;2010年06期
4 石宇峰;;隧道围岩加固及换拱施工技术[J];科技创新与应用;2013年06期
5 程荣;;武广客运尖峰顶隧道特种围岩袖阀管化学注浆技术[J];铁道建筑技术;2010年02期
6 朱亮明;;膨胀性围岩隧道施工技术[J];铁道建筑技术;2010年11期
7 张玉浩;;照壁山隧道出口碎屑流地层围岩加固处理技术[J];山西建筑;2014年04期
8 赫爱敏;;隧道围岩加固技术[J];青海交通科技;2010年01期
9 陈广柏,庞文林;浅埋富水特软围岩隧道施工技术[J];西部探矿工程;2003年04期
10 阙寿洪;;高压旋喷桩在隧道围岩加固中的应用[J];公路交通技术;2009年02期
相关会议论文 前6条
1 吉小明;白世伟;;软岩土隧道施工中围岩力学特性的探讨[A];新世纪岩石力学与工程的开拓和发展——中国岩石力学与工程学会第六次学术大会论文集[C];2000年
2 周海亮;王丛泉;;水平互层围岩隧道施工技术[A];第三届全国地下、水下工程技术交流会论文集[C];2013年
3 李凤仪;孙久政;王维维;于超;;深埋煤层开采巷道围岩灾变及其致灾机理分析[A];中国软岩工程与深部灾害控制研究进展——第四届深部岩体力学与工程灾害控制学术研讨会暨中国矿业大学(北京)百年校庆学术会议论文集[C];2009年
4 李英;崔京浩;;喷锚技术应用中的若干问题[A];第二届全国结构工程学术会议论文集(下)[C];1993年
5 高全臣;翁丽娅;岳德金;谭宝峰;;巷道围岩的爆破损伤与支护对策研究[A];矿山建设工程新进展——2005全国矿山建设学术会议文集(下册)[C];2005年
6 邓青力;;敞开式TBM掘进过节理密集带施工技术[A];2012年中铁隧道集团低碳环保优质工程修建技术专题交流会论文集[C];2012年
相关重要报纸文章 前2条
1 本报通讯员 马军萍 高军英;白龙江畔写传奇[N];甘肃经济日报;2012年
2 周新民 李佩山;东风朔黄抖风流[N];中国铁道建筑报;2000年
相关博士学位论文 前3条
1 张金松;深部巷道局部弱支护效应分析与围岩控制技术研究[D];安徽理工大学;2015年
2 李奎;水平层状隧道围岩压力拱理论研究[D];西南交通大学;2010年
3 郭富利;堡镇软岩隧道大变形机理及控制技术研究[D];北京交通大学;2010年
相关硕士学位论文 前10条
1 毛燕飞;基于岩土控制变形分析法的软弱围岩隧道开挖变形控制技术[D];长安大学;2015年
2 窦杨;软弱围岩大变形机理与防治措施研究[D];成都理工大学;2013年
3 周关艺;长沙市营盘路湘江隧道围岩稳定性分析与评价[D];湖南科技大学;2015年
4 李国彬;第三系砂泥岩地层隧道施工安全及对策研究[D];兰州交通大学;2015年
5 柴柏龙;公路隧道软弱破碎带围岩—支护结构稳定性分析[D];重庆大学;2009年
6 李岳;大变形隧道长短组合锚杆支护技术研究[D];西安科技大学;2012年
7 陈玉;共和隧道围岩大变形机制及防治措施研究[D];重庆大学;2008年
8 肖翔;吊沟岭隧道软岩施工方法研究[D];西南交通大学;2008年
9 张青林;重庆地铁隧道TBM始发段的施工技术研究[D];北京交通大学;2011年
10 张超;青海“引大济湟”工程TBM卡机段围岩大变形特性及扩挖洞室支护方案研究[D];成都理工大学;2012年
,本文编号:2238974
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2238974.html