基于LBS的交通信息主动推送模型与试验验证
[Abstract]:The increasing number of motor vehicles leads to the increasingly prominent contradiction between supply and demand. As an effective means to adjust the space-time distribution of traffic flow and improve the capacity of road network, traffic information service is widely used in urban traffic management. The research shows that about 80% of the information is closely related to the location in real life, so the combination of location service and traffic information service has become the development trend of traffic information service. The active push model of traffic information based on LBS will effectively solve the problem of information overload in traffic environment, reduce the waste of time and resources of travelers, and alleviate the contradiction between traffic supply and demand. With the help of the proposed fusion location algorithm to provide location information, this paper proposes an active push model of traffic information based on LBS, and completes the overall design of active push system and the design of software and hardware. Combining two kinds of active push scenarios, the validity of the active push model is verified. Firstly, this paper summarizes the status quo of information push and location acquisition at home and abroad, and puts forward the research content and technical route of this paper. Then, on the basis of introducing the architecture and key technologies of the location service system, this paper summarizes and analyzes the current situation and problems of the application of the transportation information service system at home and abroad. Then, by analyzing the shortcomings of the existing localization methods and making full use of the complementary characteristics of each localization method in time and space, a fusion localization algorithm based on BP neural network is proposed. The GPS,DR, is realized by using Kalman filter and quantum particle swarm optimization (QPSO). Multi-source fusion localization of WIFI; Based on the location information provided by the fusion location algorithm, an active push model based on push state, push priority, push intensity and push time is designed from the point of view of location service. In order to verify the validity of the model, the active push system is constructed, and the hardware, software and database design of the system are given in detail. Finally, based on the design of the active push system, the proposed fusion location algorithm and the active push model are verified by the actual vehicle, considering the push content design accident early warning, the road situation hint two kinds of scenarios, The validity of the push model is verified by analyzing the characteristic parameters of the active push model. The distribution characteristics of active push response time and the sensitivity of push distance and travel speed to response time are analyzed. The experimental results show that compared with the other two localization algorithms, the accuracy of the proposed fusion localization algorithm is increased by 87.06% and 68.71%, respectively. It can provide effective location information for active push model. The designed active push system can provide real-time traffic information service based on LBS for vehicles within 1-3s, and the system can adjust the active information service strategy in real time with vehicle location, road network familiarity and driving speed. In addition, the sensitivity analysis of the characteristic parameters of the active push model shows that the push distance and the driving speed have an effect on the response time, and the response time increases slowly first and then steadily with the increase of the push distance. The driving speed also presents the similar influence law. With the increase of driving speed and push distance, the response time increases and approaches to 3 s.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U495
【参考文献】
相关期刊论文 前10条
1 肖锋;侯岳;贾宝;;情境建模下的LBS智能信息服务推送方法[J];测绘通报;2016年04期
2 陈业纲;;基于GPS/WiFi/MARGE组合定位算法[J];计算机测量与控制;2015年08期
3 冯秀芳;吕淑芳;;基于RSSI和分步粒子群算法的无线传感器网络定位算法[J];控制与决策;2014年11期
4 刘兴川;吴振锋;林孝康;;基于自适应加权算法的WLAN/MARG/GPS组合定位系统[J];清华大学学报(自然科学版);2013年07期
5 马燕;袁蔚林;陈秀万;许玉斌;孙华波;;基于WiFi与GPS组合定位算法的无缝定位方法研究[J];地理与地理信息科学;2013年03期
6 来磊;曲仕茹;;交通无线传感网络运动车辆定位方法[J];交通运输工程学报;2013年01期
7 王江锋;闫学东;邵春福;魏丽英;;基于Min-Max方法和移动轨迹融合的车辆无线定位算法[J];汽车工程;2012年05期
8 张少中;俞东云;;基于小世界网络的用户位置行为兴趣模型[J];电信科学;2012年02期
9 张春永;陈群;;一种基于LBS的移动个性化推荐系统[J];科学技术与工程;2011年30期
10 卢恒惠;张盛;汪浩;林孝康;;基于联邦Kalman滤波的Wi-Fi/GPS车辆组合定位系统[J];清华大学学报(自然科学版);2011年03期
相关博士学位论文 前2条
1 刘建圻;基于路侧设备的无线测距与车辆组合定位算法的研究[D];广东工业大学;2016年
2 李红连;小波—神经网络在GPS/DR组合导航中的应用研究[D];西南交通大学;2006年
相关硕士学位论文 前10条
1 蔺川;基于LBS移动终端信息推荐系统的研究与实现[D];北京交通大学;2016年
2 刘志建;融合WLAN和Bluetooth的室内位置指纹定位技术研究[D];辽宁工业大学;2016年
3 罗涛;基于LBS的信息推送系统在车联网中的应用研究[D];湖北工业大学;2015年
4 王晓月;基于WiFi用户网络行为的信息推送系统设计[D];大连海事大学;2015年
5 王小斌;基于WLAN和ZigBee的室内定位技术研究[D];辽宁工业大学;2014年
6 李小虎;基于WiFi网络的智能导游管理系统设计与实现[D];北京邮电大学;2014年
7 徐佳;车载自组网中信息推荐技术研究[D];广西师范大学;2013年
8 易伟;基于用户行为的个性化内容推送系统研究[D];华中科技大学;2013年
9 高云璐;应急指挥系统中LBS推业务的研究与设计[D];南京邮电大学;2013年
10 王克锋;基于Android的信息推送管理系统的设计和实现[D];大连理工大学;2012年
,本文编号:2358682
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2358682.html