当前位置:主页 > 科技论文 > 路桥论文 >

山区窄式悬索桥加劲梁断面气动选型数值分析

发布时间:2019-02-16 09:49
【摘要】:大跨径悬索桥的几何非线性特点决定了其结构很容易受活荷载作用影响,如车道荷载、风荷载等动力荷载。因此,对于大跨径结构的桥梁,动力性能的分析是必要的,也是设计中的关键步骤。本文以地处甘肃省永靖县内的刘家峡大桥为工程背景,围绕桥梁主梁断面气动分析,在已有的研究工作上,采用以理论分析为基础,利用风洞试验和有限元数值模拟方法对桥梁主梁断面气动性能进行了局部到整体的分析研究。主要工作及研究结论有:(1)归纳整理了刘家峡大桥加劲梁节段风洞试验数据,得出三分力系数随折减风速的变化规律以及8个气动导数,并为后面数值分析提供对比条件。通过风洞节段模型试验测定三分力系数,绘制三分力系数随风攻角变化的曲线图,并分析气动三分力系数与颤振稳定性能之间的关系,从而通过桥梁不同断面的静三分力系数,对其结构断面颤振稳定性进行快速评价和判定。桥梁断面的气动力参数对于桥梁设计选型,以及桥梁结构的安全性和经济性具有重要意义。(2)为了更好的说明桥梁断面气动选型的优劣性,在已有的桥梁主梁断面中选取与刘家峡大桥主梁横截面尺寸相似的钢箱式主梁,其主梁净宽15.6m,高2m。利用Midas FEA中的CFD方法建立主梁断面气动数值模型,研究在几何条件相似的情况下,给定同样的边界条件和分析工况,其断面气动性能的优劣。从提取的三分力系数以及随时间变化的压力场分布图中,综合分析对比,钢桁式加劲梁断面气动性能要好于钢箱式加劲梁。(3)仅从加劲梁节段断面气动数值模拟来说明整个悬索桥的抗风性能是片面的,不完全的。因此建立悬索桥三维空间有限元动力模型,将两种不同截面形式的加劲梁归于桥梁整体结构中,添加边界条件,设定分析工况,对悬索桥整体抗风性能进行分析计算,提取前六阶振动模态。选取桥梁中跨跨中加劲梁作为研究对象,整理分析在风速逐级加载的过程中,加劲梁竖向、侧向以及扭转位移值,并以直观的曲线图列出。在桥梁整体分析中得出,结合刘家峡大桥结构特点,两种截面形式主梁的悬索桥均满足其抗风要求,但选用钢桁式截面加劲梁的抗风性能更强,更适合刘家峡大桥自身特色。(4)在数值模拟桥梁断面气动计算中,有限元Midas FEA中只能进行二维CFD分析,而钢桁式加劲梁是多个杆件组合非闭合式梁,若要确切、精准的模拟该主梁在风场环境中的气动性能,需要一个三维空间模型。目前在ANSYS中有Workbench、FLOTRAN等模块可以进行空气流场的仿真模拟,在工程领域也有很好的实际应用。在数据研究分析中均考虑了大跨径悬索桥结构的受力特点以及刘家峡大桥桥址所处地理环境、季节性气候的影响。加之该桥是西北地区首座大跨径、桥面最窄、国内首个采用大直径钢管混凝土作为桥塔构件等独具的结构特点。
[Abstract]:The geometric nonlinearity of long-span suspension bridge determines that its structure is easily affected by live load such as driveway load wind load and other dynamic loads. Therefore, the analysis of dynamic performance is necessary and a key step in the design of long span bridges. Taking the Liujiaxia Bridge, located in Yongjing County, Gansu Province, as the engineering background, around the aerodynamic analysis of the main girder section of the bridge, the existing research work is based on the theoretical analysis. Using wind tunnel test and finite element numerical simulation method, the aerodynamic performance of bridge girder section is studied locally to integrally. The main works and conclusions are as follows: (1) the wind tunnel test data of the stiffened girder section of the Liujiaxia Bridge are summarized, and the variation law of the three-point force coefficient with the reduced wind speed and the eight aerodynamic derivatives are obtained, and the comparison conditions for the latter numerical analysis are provided. The three-point force coefficient was measured by wind tunnel segment model test, and the curve of variation of three-point force coefficient with wind attack angle was plotted. The relationship between aerodynamic three-point force coefficient and flutter stability performance was analyzed, and then the static three-point force coefficient of different sections of the bridge was obtained by analyzing the relationship between aerodynamic three-point force coefficient and flutter stability performance. The flutter stability of the structure section is evaluated and judged quickly. The aerodynamic parameters of the bridge section are of great significance for the design and selection of the bridge, as well as the safety and economy of the bridge structure. (2) in order to better explain the advantages and disadvantages of the aerodynamic selection of the bridge section, The steel box girder with the same cross section size as the main girder of Liujiaxia Bridge is selected from the section of the existing main girder. The net width of the main girder is 15.6 m and the height is 2 m. The aerodynamic numerical model of the main beam section is established by using the CFD method in Midas FEA, and the aerodynamic performance of the main beam section is studied under the condition of similar geometric conditions and given the same boundary conditions and analytical conditions. From the extracted three-point force coefficient and pressure field distribution map with time variation, comprehensive analysis and comparison, The section aerodynamic performance of steel truss stiffened beam is better than that of steel box stiffened beam. (3) the aerodynamic numerical simulation of stiffened girder section shows that the wind resistance of the whole suspension bridge is one-sided and incomplete. Therefore, the three-dimensional finite element dynamic model of suspension bridge is established, and two stiffened beams with different cross-section are put into the whole structure of the bridge. Boundary conditions are added, and the analysis conditions are set up, and the overall anti-wind performance of the suspension bridge is analyzed and calculated. The first six vibration modes are extracted. The vertical, lateral and torsional displacement values of the stiffened beam in the middle span of the bridge are analyzed in the process of wind speed step by step loading. In the whole analysis of the bridge, it is concluded that the suspension bridges with two kinds of cross-section main beams can meet the requirements of wind resistance combined with the structural characteristics of Liujiaxia Bridge, but the wind-resistant performance of stiffened beams with steel truss section is stronger than that of steel truss stiffened beams. It is more suitable for the Liujiaxia Bridge itself. (4) in the numerical simulation of the cross-section aerodynamic calculation of the bridge, the finite element Midas FEA can only carry out two-dimensional CFD analysis, while the steel truss stiffening beam is a multi-member composite non-closed beam. A three-dimensional model is needed to accurately simulate the aerodynamic performance of the main beam in the wind field. At present, there are some modules such as Workbench,FLOTRAN in ANSYS to simulate the air flow field. In the analysis of the data, the bearing characteristics of the long-span suspension bridge structure and the influence of the geographical environment and seasonal climate on the site of the Liujiaxia Bridge are taken into account. In addition, the bridge is the first long span in Northwest China with the narrowest deck, and the first concrete filled steel tube (CFST) with large diameter is used as the tower member in China.
【学位授予单位】:兰州交通大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U448.25

【相似文献】

相关期刊论文 前10条

1 邹卫东;;柳州红光大桥钢加劲梁架设安装和设计[J];四川建材;2006年04期

2 过迟;;叉管段钢筋混凝土加劲梁新结构设计[J];人民长江;1985年03期

3 严国敏;白鸟大桥加劲梁的设计与制造[J];国外桥梁;1997年04期

4 王碧波;贵州关兴公路北盘江大桥加劲梁选型设计[J];人民长江;2003年07期

5 单宏伟;丁磊;周青;;泰州大桥加劲梁设计[J];中国工程科学;2012年05期

6 夏昌;;悬索桥板式加劲梁气动稳定性试验与数值研究[J];公路;2012年09期

7 金广谦;董涤新;;军用组合吊桥中加劲梁间隙角作用分析[J];工程兵工程学院学报;1989年02期

8 杨新敏;;特大跨径桁架加劲梁桥气动翼板空气动力分析研究[J];广东科技;2011年16期

9 刘瑜,周慧鹏;国道214线澜沧江大桥钢加劲梁制作[J];云南科技管理;2005年03期

10 王秀丽,李玉学;平板网架加劲梁悬索桥的力学性能分析[J];中外公路;2005年04期

相关会议论文 前10条

1 王秀丽;李玉学;;平板网架加劲梁悬索桥的力学性能分析[A];第14届全国结构工程学术会议论文集(第二册)[C];2005年

2 杨进;黄铁生;徐恭义;;高效预应力混凝土箱形加劲梁在大跨度悬索桥中的应用[A];高效预应力混凝土工程实践[C];1993年

3 张晓宇;彭献;王春雨;刘腾喜;赵跃宇;;加权残值法在梯形加劲梁中的应用[A];第21届全国结构工程学术会议论文集第Ⅱ册[C];2012年

4 王忠彬;沈锐利;唐茂林;;悬索桥钢桁架加劲梁与混凝土桥面系共同作用分析[A];2006钢桥科技论坛全国学术会议论文集[C];2006年

5 杨进;徐恭义;;汕头海湾悬索桥预应力混凝土箱形加劲梁的施工设计[A];中国土木工程学会桥梁及结构工程学会第11届年会论文集[C];1994年

6 蒙云;;P.F.C大跨径吊桥探讨[A];全国第五届纤维水泥与纤维混凝土学术会议论文集[C];1994年

7 覃杰;向中富;徐君兰;张忠智;;混凝土板式加劲梁悬索桥建设实践[A];第一届全国公路科技创新高层论坛论文集公路设计与施工卷[C];2002年

8 向中富;徐君兰;覃杰;张忠智;;混凝土板式加劲梁悬索桥[A];中国公路学会桥梁和结构工程学会2002年全国桥梁学术会议论文集[C];2002年

9 彭旺虎;邵旭东;胡建华;廖建宏;;大跨度悬索桥钢桁加劲梁的选型研究[A];2006钢桥科技论坛全国学术会议论文集[C];2006年

10 严国敏;;汕头海湾大桥方案决策之得失[A];中国土木工程学会桥梁及结构工程学会第11届年会论文集[C];1994年

相关重要报纸文章 前3条

1 李云雪 李春;实践开出智慧花[N];凉山日报(汉);2011年

2 记者 陈淦璋;“轨索滑移法”技术属世界首创[N];湖南日报;2011年

3 ;江河铸精品 科技领风骚[N];科技日报;2000年

相关博士学位论文 前3条

1 鲁乃唯;随机车流下悬索桥加劲梁动力响应概率模型与可靠度研究[D];长沙理工大学;2014年

2 秦凤江;板桁结合型加劲梁受力机理与计算理论研究[D];长安大学;2015年

3 徐恭义;在悬索桥中再度研究设计应用板式加劲梁[D];西南交通大学;2005年

相关硕士学位论文 前10条

1 杨宏涛;祥临公路澜沧江悬索桥加劲梁的疲劳寿命分析[D];昆明理工大学;2015年

2 廖刘算;钢-混结合加劲梁悬索桥剪力滞分析及模型简化[D];西南交通大学;2015年

3 朱军颖;人行悬索桥加劲梁选型相关研究[D];西南交通大学;2015年

4 崔后吉;PC板式加劲梁悬索桥施工控制研究[D];长沙理工大学;2014年

5 谢峰;山区钢桁加劲梁悬索桥加固设计方法研究[D];重庆交通大学;2015年

6 贾一全;山区窄式悬索桥加劲梁断面气动选型数值分析[D];兰州交通大学;2015年

7 陈彩霞;悬索桥钢箱加劲梁安装过程及临时连接的研究[D];西南交通大学;2007年

8 李翠;悬索桥分离式箱形加劲梁力学特性研究[D];西南交通大学;2008年

9 栗金营;钢桁加劲梁悬索桥施工监控研究[D];郑州大学;2011年

10 门永斌;桁架加劲梁悬索桥悬臂架设过程分析及稳定性研究[D];西南交通大学;2008年



本文编号:2424317

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2424317.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户9c27d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com