基于时序关联规则挖掘的交通拥堵预测技术研究
[Abstract]:At present, the process of urban modernization in our country is advancing, but the problem of traffic congestion is becoming more and more obvious, and the traffic jam has become one of the serious problems in the large and medium-sized cities. The harmfulness of urban traffic congestion mainly includes two aspects: one is the time delay and energy waste caused by the traffic jam, and brings great economic loss to the society. According to the data from the experts of the Chinese Academy of Sciences, the economic loss caused by the traffic congestion of the city is about 1 billion yuan a day. Secondly, when the vehicle speed is too low, the pollution degree of the automobile exhaust is greatly increased, and meanwhile, a large amount of noise is generated, so that the air quality and the urban environmental quality are greatly reduced, and further serious harm to the physical and mental health of the citizen is caused, and the living standard of the citizen is reduced. Therefore, the effective prediction of complex traffic conditions is an important problem to be solved at present. In recent years, more and more scholars have begun to study the intelligent transportation system, and put forward a variety of traffic jam prediction methods. The common traffic congestion prediction method is mainly based on various mathematical models, and most of the traffic jam prediction methods are only predicted at a single time of a single road. Due to the complex and changeable nature of the traffic system, the parameters often taken into account are not comprehensive, and the timing of the traffic jam events is not taken into account, and the actual situation cannot be well adapted. In the traffic system, the traffic jam of each road section often follows a certain causal relationship, while taking into account the timing of the traffic jam event, this paper proposes a traffic jam prediction method based on time-series association rule mining, which first uses the genetic algorithm to mine the time-series association rules, The correlation rules are used as data samples to construct a classifier so as to achieve the purpose of predicting the traffic jam. The method adopts the idea of an evolutionary algorithm, effectively avoids the defect that the traditional method needs to determine the excessive parameters, the algorithm is more close to the actual living condition, the traffic jam can be effectively predicted, the traffic pressure can be relieved in time, the traffic congestion rate is reduced, the road smoothness is improved, And provides a reference basis for ensuring the high-efficiency and fast travel.
【学位授予单位】:沈阳理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U491.14;TP311.13
【参考文献】
相关期刊论文 前10条
1 胡启洲;刘英舜;郭唐仪;;城市交通拥堵态势监控的时空分布形态识别模型[J];交通运输系统工程与信息;2012年03期
2 李春英;汤志康;曹元大;;多分类器组合的交通拥堵预测模型研究[J];计算机工程与设计;2010年23期
3 荣冈;刘进锋;顾海杰;;数据库中动态关联规则的挖掘[J];控制理论与应用;2007年01期
4 陈涛;陈森发;;道路交通无序拥挤控制模型的研究[J];公路交通科技;2006年11期
5 吴兵;李林波;;交通拥挤的进化动态分析[J];中国公路学报;2006年03期
6 庄斌;杨晓光;李克平;;道路交通拥挤事件判别准则与检测算法[J];中国公路学报;2006年03期
7 雷胜;;城市交通流量智能组合预测方法研究[J];西华大学学报(自然科学版);2006年02期
8 李硕;高速公路常发性交通拥挤路段实时判定与跟踪研究[J];中南公路工程;2005年01期
9 戴红;基于模糊模式识别的城市道路交通状态检测算法[J];吉林工程技术师范学院学报;2005年03期
10 杨兆升,杨庆芳,冯金巧;基于模糊综合推理的道路交通事件识别算法[J];公路交通科技;2003年04期
相关会议论文 前1条
1 高晗;裴玉龙;;基于小波包变换的道路交通拥挤事件检测方法[A];2007年中国智能自动化会议论文集[C];2007年
相关博士学位论文 前1条
1 冯金巧;城市道路交通拥挤预测关键技术研究[D];吉林大学;2008年
相关硕士学位论文 前3条
1 黄国浪;城市交通拥堵的识别与预测[D];长安大学;2014年
2 屈健;城市主干道交通拥堵预测方法研究[D];西南交通大学;2012年
3 王江锋;高速公路交通拥挤状态自动识别方法研究[D];吉林大学;2004年
,本文编号:2508018
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2508018.html