柔性中压直流电气化铁路系统杂散电流与钢轨电位研究
发布时间:2021-10-17 10:17
柔性中压直流电气化铁路系统(RES)具有设计简单、成本效益高以及对供电质量和配电网危害小等优点,可作为未来高速铁路供电的一种方案。本文对柔性中压直流电气化铁路系统的电压等级选择与运行过程中的杂散电流和钢轨电位两个方面的重要内容开展了研究。首先,考虑影响系统电压等级的各种因素讨论了其电压等级的选择。同时,对其怎样影响系统电压等级的选择进行了定义和详细说明。通过简单的算法选择了合适的电压等级,并验证了在该电压等级下的系统性能。其次,对杂散电流进行深入研究。文章对杂散电流的产生原因,分布以及其影响进行了详细介绍。杂散电流的主要危害是腐蚀埋在轨道附近的金属结构。因此,详细介绍了杂散电流的腐蚀机理,并对杂散电流沿轨道的分布进行研究。进一步地,通过介绍钢轨电位控制装置对钢轨电位的理论知识进行了阐述。为了验证理论分析的正确性,本文利用MATLAB/Simulink仿真软件建立仿真模型并对轨道的杂散电流分布、钢轨电位控制装置的应用及其对杂散电流的影响进行了仿真分析。除此之外,还对杂散电流的控制方案以及杂散电流排流网的应用进行了介绍。最后,对本文的主要研究工作及不足进行了总结,并对后续研究工作进行了展望...
【文章来源】:西南交通大学四川省 211工程院校 教育部直属院校
【文章页数】:74 页
【学位级别】:硕士
【文章目录】:
摘要
ABSTRACT
CHAPTER 1 INTRODUCTION
1.1 RAILWAY ELECTRIFICATION
1.2 TYPES OF RAILWAY ELECTRIFICATION
1.3 HIGH-SPEED RAILWAY ELECTRIFICATION
1.4 THE RECENT CONCEPT OF MVDC RES
1.5 SIGNIFICANCE OF THE STUDY
1.6 Related Works
1.7 ORGANIZATION OF THE THESIS
CHAPTER 2: SELECTION OF NOMINAL VOLTAGE LEVEL
2.1 INTRODUCTION
2.2 CONSIDERATIONS FOR THE CHOICE OF NOMINAL VOLTAGE
2.2.1 Stray Current
2.2.2 Rail to Ground Voltage
2.2.3 Operating Temperature of Overhead Lines
2.2.4 Overhead Line Cross-Section
2.2.5 Minimum Voltage Level
2.2.6 Train Traffic
2.2.7 Sub-Station Spacing
2.2.8 Train Speed
2.2.9 Circuit Breaker
2.2.10 Series Connection of Power Electronic Devices
2.2.11 Insulation level
2.2.12 Voltage level of Integrating Systems
2.3 CLASSIFICATION
2.4 METHOD TO GET A NOMINAL VOLTAGE
2.5 CALCULATION AND SIMULATION
2.6 SUMMARY
CHAPTER 3: STRAY CURRENT AND ITS DYNAMICS
3.1 STRAY CURRENT
3.1.1 Definition
3.1.2 Historical Background of Stray Current in DC Traction System
3.1.3 How it is Generated
3.1.4 Stray Current Interference
3.2 STRAY CURRENT CORROSION AS ELECTROLYSIS PROCESS
3.3 FARADAY’S LAW AND STRAY CURRENT PARAMETERS
3.3.1 Total Stray Current
3.3.2 Gross Leakage Charge
3.3.3 Mean Total Stray Current:
3.4 RAIL TO GROUND POTENTIAL
3.5 NUMERICAL CALCULATION MODEL
3.5.1 Method I
3.5.2 Method II
3.5.3 Novel Calculation Method
3.6 CONDITIONS REQUIRED FOR THE METALLIC STRUCTURE TO PICK UP THE STRAY CURRENT
3.7 SOME FAVORABLE EFFECT OF STRAY CURRENT
3.8 RAIL POTENTIAL CONTROL DEVICE (RPCD)
CHAPTER 4: STRAY CURRENT CONTROL TECHNIQUE
4.1 DISTRIBUTION OF STRAY CURRENT IN DIFFERENT MEDIUMS
4.2 STRAY CURRENT WITH DISTRIBUTED TRAFFIC IN RAILWAY LINES
4.3 CORROSION MANAGEMENT PHILOSOPHY
4.4 RAILWAY EARTHING SCHEMES
4.5 STRAY CURRENT COLLECTION SYSTEM
4.6 VARIOUS STRAY CONTROL SCHEMES
4.6.1 Electrical Drainage Bond
4.6.2 Electrical Shield
4.6.3 Intentional Anodes and Cathodic Protection (CP)
4.7 STRAY CURRENT WHEN RPCD IS USED
CONCLUSION AND RECOMMENDATION FOR FUTURE WORK
SUGGESTIONS FOR FUTURE WORK
ACKNOWLEDGEMENTS
REFERENCES
APPENDIX 1
【参考文献】:
期刊论文
[1]Adaptive droop control for better current-sharing in VSC-based MVDC railway electrification system[J]. Salman AATIF,Haitao HU,Xiaowei YANG,Yinbo GE,Zhengyou HE,Shibin GAO. Journal of Modern Power Systems and Clean Energy. 2019(04)
[2]钢轨电位限制装置优化控制[J]. 刘建华,刘旭,李艳. 电测与仪表. 2014(14)
本文编号:3441592
【文章来源】:西南交通大学四川省 211工程院校 教育部直属院校
【文章页数】:74 页
【学位级别】:硕士
【文章目录】:
摘要
ABSTRACT
CHAPTER 1 INTRODUCTION
1.1 RAILWAY ELECTRIFICATION
1.2 TYPES OF RAILWAY ELECTRIFICATION
1.3 HIGH-SPEED RAILWAY ELECTRIFICATION
1.4 THE RECENT CONCEPT OF MVDC RES
1.5 SIGNIFICANCE OF THE STUDY
1.6 Related Works
1.7 ORGANIZATION OF THE THESIS
CHAPTER 2: SELECTION OF NOMINAL VOLTAGE LEVEL
2.1 INTRODUCTION
2.2 CONSIDERATIONS FOR THE CHOICE OF NOMINAL VOLTAGE
2.2.1 Stray Current
2.2.2 Rail to Ground Voltage
2.2.3 Operating Temperature of Overhead Lines
2.2.4 Overhead Line Cross-Section
2.2.5 Minimum Voltage Level
2.2.6 Train Traffic
2.2.7 Sub-Station Spacing
2.2.8 Train Speed
2.2.9 Circuit Breaker
2.2.10 Series Connection of Power Electronic Devices
2.2.11 Insulation level
2.2.12 Voltage level of Integrating Systems
2.3 CLASSIFICATION
2.4 METHOD TO GET A NOMINAL VOLTAGE
2.5 CALCULATION AND SIMULATION
2.6 SUMMARY
CHAPTER 3: STRAY CURRENT AND ITS DYNAMICS
3.1 STRAY CURRENT
3.1.1 Definition
3.1.2 Historical Background of Stray Current in DC Traction System
3.1.3 How it is Generated
3.1.4 Stray Current Interference
3.2 STRAY CURRENT CORROSION AS ELECTROLYSIS PROCESS
3.3 FARADAY’S LAW AND STRAY CURRENT PARAMETERS
3.3.1 Total Stray Current
3.3.2 Gross Leakage Charge
3.3.3 Mean Total Stray Current:
3.4 RAIL TO GROUND POTENTIAL
3.5 NUMERICAL CALCULATION MODEL
3.5.1 Method I
3.5.2 Method II
3.5.3 Novel Calculation Method
3.6 CONDITIONS REQUIRED FOR THE METALLIC STRUCTURE TO PICK UP THE STRAY CURRENT
3.7 SOME FAVORABLE EFFECT OF STRAY CURRENT
3.8 RAIL POTENTIAL CONTROL DEVICE (RPCD)
CHAPTER 4: STRAY CURRENT CONTROL TECHNIQUE
4.1 DISTRIBUTION OF STRAY CURRENT IN DIFFERENT MEDIUMS
4.2 STRAY CURRENT WITH DISTRIBUTED TRAFFIC IN RAILWAY LINES
4.3 CORROSION MANAGEMENT PHILOSOPHY
4.4 RAILWAY EARTHING SCHEMES
4.5 STRAY CURRENT COLLECTION SYSTEM
4.6 VARIOUS STRAY CONTROL SCHEMES
4.6.1 Electrical Drainage Bond
4.6.2 Electrical Shield
4.6.3 Intentional Anodes and Cathodic Protection (CP)
4.7 STRAY CURRENT WHEN RPCD IS USED
CONCLUSION AND RECOMMENDATION FOR FUTURE WORK
SUGGESTIONS FOR FUTURE WORK
ACKNOWLEDGEMENTS
REFERENCES
APPENDIX 1
【参考文献】:
期刊论文
[1]Adaptive droop control for better current-sharing in VSC-based MVDC railway electrification system[J]. Salman AATIF,Haitao HU,Xiaowei YANG,Yinbo GE,Zhengyou HE,Shibin GAO. Journal of Modern Power Systems and Clean Energy. 2019(04)
[2]钢轨电位限制装置优化控制[J]. 刘建华,刘旭,李艳. 电测与仪表. 2014(14)
本文编号:3441592
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/3441592.html