BP神经网络结合PCA的LCD显示器光谱特征化模型
本文关键词:基于遗传BP神经网络的主被动遥感协同反演土壤水分,由笔耕文化传播整理发布。
[1] 宫睿,徐海松,张显斗,等.液晶显示器色度特征化的分空间补偿模型[J].光学学报,2011,31(4):289-294. GONG R, XU H S, ZHANG X D, et al. Sub-space compensation model for accurate colorimetric characterization of liquid crystal displays[J]. Acta Optica Sinica, 2001, 31(4): 289-294. (in Chinese)
[2] 王勇,徐海松.液晶显示器颜色特征化的S模型算法[J].中国图象图形学报,2007,12(3):491-494. WANG Y, XU H S. The S shape model for LCD colorimetric characterization[J]. Journal of Image and Graphics, 2007, 12(3): 491-494. (in Chinese)
[3] MICHAEL S, MATTHEW A, SRINIVASAN C, et al. A standard default color space for the internet-sRGB[EB/OL].(1996-11-05)
[4] 刘攀,刘真,朱明.基于最佳立方体细分的显示器颜色再现模型[J].包装工程,2014,35(13):128-132. LIU P, LIU Z, ZHU M. Monitor color reproduction model based on optimal cube subdivision[J]. Packaging Engineering, 2014, 35(13): 128-132. (in Chinese)
[5] 许宝卉,李言.基于ICC标准的CRT色空间转换方法的研究与比较[J].液晶与显示,2009,24(3):438-442. XU B H, LI Y. Research and comparison of CRT color space conversions based on ICC standard of color management[J]. Chinese Journal of Liquid Crystals and Displays, 2009, 24(3): 438-442. (in Chinese)
[6] 刘浩学,崔桂华,黄敏,等.按波长分区的LCD颜色特征化模型[J].光谱学与光谱分析,2013,33(10):2751-2757. LIU H X, CUI G H, HUANG M, et al. Colorimetric characterization of LCD based on wavelength partition spectral model[J]. Spectroscopy and Spectral Analysis, 2013, 33(10): 2751-2757. (in Chinese)
[7] 李金城.色彩高保真复制的理论与实践[D].南京:南京林业大学,2013. LI J C. Theory and practice of high-fidelity color reproduction[D]. Nanjing: Nanjing Forestry University, 2013. (in Chinese)
[8] 田亮,罗宇,王阳.基于遗传算法优化BP神经网络的TIG焊缝尺寸预测模型[J].上海交通大学学报,2013,47(11):1690-1696. TIAN L, LUO Y, WANG Y. Prediction model of TIG welding seam size based on BP neural network optimized by genetic algorithm[J]. Journal of Shanghai Jiaotong University, 2013, 47(11): 1690-1696. (in Chinese)
[9] TZENG D Y, BERNS R S. A review of principal component analysis and its applications to color technology[J]. Color Research & Application, 2005, 30(2): 84-98.
[10] FAIRMAN H S, BRILL M H. The principal components of reflectances[J]. Color Research & Application, 2004, 29(2): 104-110.
[11] 刘春艳,凌建春,寇林元,等.GA-BP神经网络与BP神经网络性能比较[J].中国卫生统计,2013,30(2):173-176. LIU C Y, LING J C, KOU L Y, et al. Performance comparison between GA-BP neural network and BP neural network[J].Chinese Journal of Health Statistics, 2013, 30(2): 173-176. (in Chinese)
[12] 罗戎蕾,刘绍华,苏晨.基于遗传算法的BP神经网络服装销售预测方法[J].北京邮电大学学报,2014,37(4):39-43. LUO R L, LIU S H, SU C. Garment sales forecast method based on genetic algorithm and BP neural network[J]. Journal of Beijing University of Posts and Telecommunications, 2014, 37(4): 39-43. (in Chinese)
[13] 余凡,赵英时,李海涛.基于遗传BP神经网络的主被动遥感协同反演土壤水分[J].红外与毫米波学报,2012,31(3):283-288.
YU F, ZHAO Y S, LI H T. Soil moisture retrieval based on GA-BP neural networks algorithm[J]. Journal of Infrared and Millimeter Waves, 2012, 31(3): 283-288. (in Chinese)
本文关键词:基于遗传BP神经网络的主被动遥感协同反演土壤水分,,由笔耕文化传播整理发布。
本文编号:242748
本文链接:https://www.wllwen.com/kejilunwen/rengongzhinen/242748.html