几类分数阶脉冲微分方程的边值问题
本文关键词:几类分数阶脉冲微分方程的边值问题
更多相关文章: 边值问题 分数阶微分方程 不动点定理 非瞬时脉冲
【摘要】:近年来,分数阶微分方程引起数学工作者的广泛关注。分数阶微分方程是一个相对较新的研究领域,是对整数阶微分方程的推广,它在自然科学,工程学,物理学等很多领域都有非常广泛的应用。本文主要运用压缩映射原理和Krasnoselskii's不动点定理讨论了几类分数阶脉冲微分方程边值问题解的存在性,这里的脉冲是非瞬时的、持续的,并构造实例来论证所得到的结果。全文共分四章:第一章,主要介绍了分数阶微分方程和脉冲微分方程的研究背景和现状,并介绍了一些要得到主要结论所需要的基本定义和相关引理。第二章,对一类具有非瞬时脉冲扰动的分数阶微分方程的初值问题解的存在性进行了研究:应用压缩映射原理,得到了该方程解存在的充分条件,并给出一个具体的例子验证了所得到的结果。第三章,我们主要讨论分数阶混合型脉冲微分方程的边值问题,如下所示:其中应用压缩映射原理讨论了该方程解的存在性和唯一性,并利用Krasnoselskii's不动点定理得到该分数阶微分方程的边值问题至少有一个解存在的充分条件。第四章,应用Krasnoselskii's不动点定理讨论了下列分数阶脉冲微分方程边值问题的解:这里α是实数,并且n-1αn,n=[α]+1,t∈J=[0,T],将区间J划分为0=s0㩳t1㩳s1㩳...㩳t_m㩳s_m㩳t_(m+1)=T。
【关键词】:边值问题 分数阶微分方程 不动点定理 非瞬时脉冲
【学位授予单位】:昆明理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:O175.8
【目录】:
- 摘要5-7
- Abstract7-11
- 第一章 绪论以及预备知识11-17
- 1.1 研究背景和现状11-13
- 1.2 预备知识13-17
- 第二章 一类分数阶脉冲微分方程初值问题解的存在性17-25
- 2.1 引言17
- 2.2 预备知识和主要引理17-19
- 2.3 主要结论19-22
- 2.4 例子22-25
- 第三章 具非瞬时脉冲扰动的分数阶混合脉冲微分方程边值问题解的存在性25-39
- 3.1 引言25-27
- 3.2 预备知识和主要引理27-29
- 3.3 主要结论29-37
- 3.4 例子37-39
- 第四章 一类分数阶脉冲微分方程边值问题解的研究39-49
- 4.1 引言39-40
- 4.2 预备知识和引理40-42
- 4.3 主要结论42-47
- 4.4 例子47-49
- 第五章 结论与展望49-51
- 5.1 结论49-50
- 5.2 展望50-51
- 致谢51-53
- 参考文献53-55
- 附录A (攻读学位其间发表论文目录)55
【相似文献】
中国期刊全文数据库 前10条
1 王德金;郑永爱;;分数阶混沌系统的延迟同步[J];动力学与控制学报;2010年04期
2 杨晨航,刘发旺;分数阶Relaxation-Oscillation方程的一种分数阶预估-校正方法[J];厦门大学学报(自然科学版);2005年06期
3 王发强;刘崇新;;分数阶临界混沌系统及电路实验的研究[J];物理学报;2006年08期
4 夏源;吴吉春;;分数阶对流——弥散方程的数值求解[J];南京大学学报(自然科学版);2007年04期
5 张隆阁;;一类参数不确定混沌系统的分数阶自适应同步[J];中国科技信息;2009年15期
6 陈世平;刘发旺;;一维分数阶渗透方程的数值模拟[J];高等学校计算数学学报;2010年04期
7 辛宝贵;陈通;刘艳芹;;一类分数阶混沌金融系统的复杂性演化研究[J];物理学报;2011年04期
8 黄睿晖;;分数阶微方程的迭代方法研究[J];长春理工大学学报;2011年06期
9 蒋晓芸,徐明瑜;分形介质分数阶反常守恒扩散模型及其解析解[J];山东大学学报(理学版);2003年05期
10 陈玉霞;高金峰;;一个新的分数阶混沌系统[J];郑州大学学报(理学版);2009年04期
中国重要会议论文全文数据库 前10条
1 李西成;;经皮吸收的分数阶药物动力学模型[A];中国力学学会学术大会'2009论文摘要集[C];2009年
2 谢勇;;分数阶模型神经元的动力学行为及其同步[A];第四届全国动力学与控制青年学者研讨会论文摘要集[C];2010年
3 张硕;于永光;王亚;;带有时滞和随机扰动的不确定分数阶混沌系统准同步[A];中国力学大会——2013论文摘要集[C];2013年
4 李常品;;分数阶动力学的若干关键问题及研究进展[A];中国力学大会——2013论文摘要集[C];2013年
5 李常品;;分数阶动力学简介[A];第三届海峡两岸动力学、振动与控制学术会议论文摘要集[C];2013年
6 蒋晓芸;徐明瑜;;时间依靠分数阶Schr銉dinger方程中的可动边界问题[A];中国力学学会学术大会'2009论文摘要集[C];2009年
7 王花;;分数阶混沌系统的同步在图像加密中的应用[A];第二届全国随机动力学学术会议摘要集与会议议程[C];2013年
8 王在华;;分数阶动力系统的若干问题[A];第三届全国动力学与控制青年学者研讨会论文摘要集[C];2009年
9 张硕;于永光;王莎;;带有时滞和随机扰动的分数阶混沌系统同步[A];第十四届全国非线性振动暨第十一届全国非线性动力学和运动稳定性学术会议摘要集与会议议程[C];2013年
10 李西成;;一个具有糊状区的分数阶可动边界问题的相似解研究[A];中国力学大会——2013论文摘要集[C];2013年
中国博士学位论文全文数据库 前10条
1 陈善镇;两类空间分数阶偏微分方程模型有限差分逼近的若干研究[D];山东大学;2015年
2 任永强;油藏与二氧化碳埋存问题的数值模拟与不确定性量化分析以及分数阶微分方程的数值方法[D];山东大学;2015年
3 蒋敏;分数阶微分方程理论分析与应用问题的研究[D];电子科技大学;2015年
4 卜红霞;基于分数阶傅里叶域稀疏表征的CS-SAR成像理论与算法研究[D];北京理工大学;2015年
5 杨变霞;分数阶Laplace算子的谱理论及其在微分方程中的应用[D];兰州大学;2015年
6 邵晶;几类微分系统的定性理论及其应用[D];曲阜师范大学;2015年
7 方益;分数阶Yamabe问题的一些紧性结果[D];中国科学技术大学;2015年
8 王国涛;几类分数阶非线性微分方程解的存在理论及应用[D];西安电子科技大学;2014年
9 陈明华;分数阶微分方程的高阶算法及理论分析[D];兰州大学;2015年
10 孟伟;基于分数阶拓展算子的灰色预测模型[D];南京航空航天大学;2015年
中国硕士学位论文全文数据库 前10条
1 楚彩虹;单载波分数阶傅里叶域均衡系统及关键技术研究[D];郑州大学;2015年
2 张欣欣;Caputo型分数阶神经网络的稳定性分析[D];燕山大学;2015年
3 杨晶;带分数阶边界条件的分数阶微分方程边值问题[D];天津财经大学;2015年
4 王琳莉;分数阶Hamilton系统的运动方程和对称性理论研究[D];浙江理工大学;2016年
5 陈秀凯;基于移位Jacobi多项式求解三类变分数阶非线性微积分方程[D];燕山大学;2015年
6 纪翠翠;时间分数阶偏微分方程高阶数值解法[D];东南大学;2015年
7 董菁菁;分数阶长短波方程的长时间行为[D];鲁东大学;2016年
8 崔晓玉;几类分数阶扩散方程中线性方程组的预处理迭代解法[D];华东师范大学;2016年
9 吴亚运;几类分数阶微分方程解的存在性研究[D];安徽大学;2016年
10 曹玉童;两类分数阶差分方程解对初值的连续依赖性[D];安徽大学;2016年
,本文编号:1000326
本文链接:https://www.wllwen.com/kejilunwen/yysx/1000326.html