临界状态下可分解分支过程极限行为的研究
发布时间:2018-01-28 10:19
本文关键词: 分支过程 可分解 临界 极限理论 条件概率 出处:《南京大学》2017年硕士论文 论文类型:学位论文
【摘要】:分支过程应用十分广泛,是随机过程的重要分支。本文对可分解分支过程理论做了简单的介绍,包括经典的Galton-Watson,可分解的定义,母函数,灭绝概率等。文章着重研究了在临界状态下,粒子的灭绝速度,以及概率母函数的极限行为。众所周知,临界状态的分支过程灭绝概率q=1。我们假设n时刻灭绝,研究灭绝时刻的概率。本文还并进一步研究了粒子数目的条件期望。
[Abstract]:Branching process is widely used and is an important branch of stochastic process. In this paper, the theory of decomposable branching process is briefly introduced, including the classical Galton-Watson, the definition of decomposable process. In this paper, the extinction rate of particles in critical state and the limit behavior of probabilistic parent function are studied. The extinction probability of the critical state in the branching process Q ~ (1). We assume the extinction at n moment and study the extinction probability at the time of extinction. We also study the conditional expectation of the number of particles in this paper.
【学位授予单位】:南京大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O211.65
,
本文编号:1470485
本文链接:https://www.wllwen.com/kejilunwen/yysx/1470485.html