单项式理想幂的代数性质
发布时间:2018-03-10 13:51
本文选题:边理想 切入点:无平方因子 出处:《苏州大学》2015年硕士论文 论文类型:学位论文
【摘要】:本文主要分为五部分,前两章分别介绍了文章的研究背景及相关预备知识。令G为一简单图,I为它的边理想。文献[9]中作者证明了定理:Ass(R/I)(?) Ass(R/I2) (?) Ass(R/I3)(?)...。在第三章,本文将给出此定理一个更为简单的证明。令G为一连通图,它只含一个奇圈,且除此之外不含其他圈。第四章着重研究了若I为图G的边理想,Ass(R/It)能在何处达到稳定。第五章证明了无平方单项式理想I为标准挠自由时,其子式也为标准挠自由,同时I具有packing性质。
[Abstract]:This paper is mainly divided into five parts. The first two chapters introduce the research background and related preparatory knowledge of the paper respectively. Let G be a simple graph I as its edge ideal. ) Assan R / I2)? Assan R / I 3? In Chapter 3, we will give a simpler proof of this theorem. Let G be a connected graph, and it contains only one odd cycle. In chapter 4th, we focus on where the edge ideal Assr / I can achieve stability if I is the graph G. Chapter 5th proves that the subform of the square monomial ideal I is the standard torsion freedom when I is the standard torsion freedom. At the same time, I has packing property.
【学位授予单位】:苏州大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:O153.3
【相似文献】
相关硕士学位论文 前1条
1 吴绘绘;单项式理想幂的代数性质[D];苏州大学;2015年
,本文编号:1593625
本文链接:https://www.wllwen.com/kejilunwen/yysx/1593625.html