当前位置:主页 > 科技论文 > 数学论文 >

有界线性算子和的Drazin逆表示

发布时间:2018-03-20 14:36

  本文选题:Drazin逆 切入点:预解式 出处:《数学学报(中文版)》2017年06期  论文类型:期刊论文


【摘要】:本文讨论了两个有界线性算子和的Drazin可逆性及其表达式.在PQ~3=0,P~2Q=0,QPQ~2=0的条件下,采用预解式的Laurent展开方法,证明了P+Q是Drazin可逆的,并得到了P+Q的Drazin逆的表达式.同时,还确定出P+Q的指标的范围ind(P+Q)≤2t+r+s—1,给出数值算例说明结论的有效性.
[Abstract]:In this paper, we discuss the Drazin reversibility of the sum of two bounded linear operators and its expression. Under the condition of PQ ~ (3 / 0), PQ ~ (2) Q ~ (0) and Q ~ (2) Q ~ (2 +) ~ 0, we prove that PQ is Drazin reversible and obtain the expression of the Drazin inverse of PQ by using the resolvent Laurent expansion method. The range of the index of P Q (ind(P Q) 鈮,

本文编号:1639525

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/1639525.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户22c07***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com