日本最早对数表底本考推
发布时间:2018-04-01 08:07
本文选题:江户时期 切入点:对数 出处:《中国科技史杂志》2017年03期
【摘要】:18世纪晚期,日本出现了两部对数书籍,一部为安岛直圆《真假数表》,另一部本多利明《大测加减代乘除表》。一些学者认为安岛的对数知识来源于中国的《数理精蕴》,但无确切证据,本文对相关史料进行分析后认为,安岛最早接触的对数书籍可能不是《数理精蕴》。对于《大测加减代乘除表》,很多日本学者认为其底本为荷兰科内利斯·达维斯(Cornelis Douwes,1712—1773)的"航海表"(Zeemans-tafelen)。但"航海表"中无数表,故此结论值得怀疑。本多利明《大测加减代乘除表》与荷兰克拉斯·德·维利艾斯(Klaas De Vries)所著《航海宝函》(Schat-kamer ofte kunst der stuurlieden)1781年版中的对数表存在两个相同数值错误,因而可判定《大测加减代乘除表》的对数数值来自西洋。但是,安岛与本多的对数表中都出现中国的数学名词,安岛与本多也曾接触过涉及对数的中国历算书,所以仍可以认为这两部对数表的出现还是有着中国书籍影响存在的。
[Abstract]:In the late 18th century, two logarithmic books appeared in Japan. One is Ando direct circle, the other is Bendolimine, the multiplication and division table of large measurement, addition and subtraction. Some scholars think that the logarithmic knowledge of Andao comes from the Chinese mathematical essence, but there is no definite evidence. Ando's earliest logarithmic book may not have been a mathematical book. Many Japanese scholars believe that the original version of the Great Test list is Zeemans-tafelen.However, many Japanese scholars believe that it is based on the Seamans-tafelen.However, many Japanese scholars believe that it is based on the "navigational Table" by Cornelis Davies of the Netherlands, Cornelis Douwesi 1712-1773. Therefore, the conclusion is doubtful. There are two identical numerical errors in the logarithmic table of Bendolimine's Great Test addition and subtraction multiplier and Division Table and in the 1781 edition of Schat-kamer ofte kunst der stuurlieden, by Kraas de Vrieses of the Netherlands. It is therefore possible to determine that the logarithmic value of the Great Test, addition, subtraction and Division Table comes from the Western Ocean. However, the logarithmic tables of Ando and Bendo both appear Chinese mathematical nouns, and Ando and Bendo have also been exposed to Chinese almanac books involving logarithms. So we can still think that the appearance of these two logarithmic tables still has the influence of Chinese books.
【作者单位】: 中国社会科学院世界历史研究所;
【基金】:人社部留学人员科技活动择优资助(启动类)项目
【分类号】:O11
【相似文献】
相关期刊论文 前2条
1 徐君;杨尚;;安岛直圆“累圆术”中的对称思想[J];阴山学刊(自然科学版);2009年04期
2 徐君;;和算“十字环”问题发展述评[J];阴山学刊(自然科学);2010年04期
相关博士学位论文 前1条
1 徐君;安岛直圆与和田宁的圆理研究[D];内蒙古师范大学;2012年
,本文编号:1694670
本文链接:https://www.wllwen.com/kejilunwen/yysx/1694670.html