当前位置:主页 > 科技论文 > 数学论文 >

具有一般复发现象的疾病模型的全局稳定性

发布时间:2018-04-10 07:15

  本文选题:全局稳定性 切入点:时滞 出处:《应用数学学报》2017年01期


【摘要】:本文研究了具有一般复发现象和非线性发生率的疾病模型的动力学性质,其中模型是具有无穷分布时滞的微积分方程.该模型描述了包含疱疹等传染病的—般复发现象.利用一致持久性理论和李雅普诺夫函数,我们证明了基本再生数R_0决定的系统的全局动力学性质:当R_0≤1时,疾病灭绝;当R_01时,疾病持久生存,并且正平衡点是全局吸引的.
[Abstract]:In this paper, the dynamical properties of a disease model with general recurrence and nonlinear incidence are studied, in which the model is a calculus equation with infinite distributed delay.The model describes the recurrence of infectious diseases including herpes.By using the uniform persistence theory and Lyapunov function, we prove the global dynamical properties of the system determined by the basic reproducing number R _ S _ 0: when R _ 0 鈮,

本文编号:1730198

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/1730198.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户7ce5e***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com