当前位置:主页 > 科技论文 > 数学论文 >

Huppert可裂性定理的一个推广

发布时间:2018-04-13 21:40

  本文选题:可裂性 + 正规子群 ; 参考:《中北大学学报(自然科学版)》2017年01期


【摘要】:研究了一个有限群何时在某个正规子群上可裂的问题,推广了著名的Huppert可裂性定理,主要把Huppert可裂性定理中讨论的p-版本推广到π-版本并对其进行了详细的证明,从而得到一个更为广泛的证明可裂性的判据.其证明引用了经典的Gaschütz可裂性定理,运用了传输同态,采用了由特殊到一般的证明思路.最后,作为对该定理的实际应用,给出了若干经典的传输定理的统一的简化证明.
[Abstract]:In this paper, the problem of when a finite group can be split on a normal subgroup is studied, and the famous Huppert cleavage theorem is generalized. The p- version discussed in the Huppert cleavage theorem is extended to 蟺-version and proved in detail.Thus, a more extensive criterion to prove the cleavability is obtained.The proof uses the classical Gasch 眉 tz cleavage theorem, uses the transmission homomorphism, and adopts the proof idea from special to general.Finally, as a practical application of the theorem, a unified simplified proof of some classical transmission theorems is given.
【作者单位】: 山西大学数学科学学院;
【基金】:山西省自然科学基金资助项目(201601D011006)
【分类号】:O152.1


本文编号:1746293

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/1746293.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户d03ea***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com