关于2可逆的置换可分环(英文)
发布时间:2018-05-02 11:59
本文选题:单位正则元 + 特殊clean元 ; 参考:《数学进展》2017年04期
【摘要】:环R称为可分环,如果对任何有限生成投射右R-模A和B,A崴A≌A崴B≌B崴B崴A≌B.假设R是置换可分环,其中2可逆,a-a~3∈R正则,证明了a∈R单位正则当且仅当R(1-a~2)R=Rr(a)=e(a)R.环R中元素a称为特殊clean元,如果有幂等元e∈R使得a-e∈R可逆,而且aR∩eR=0.进一步,证明了a∈R是特殊clean元,如果aR/ar(a~2),R/(aR+r(a))投射,而且R(a-a~3)R=Rar(a~2)=e(a~2)aR.由此推广了正则可分环中相关结论.
[Abstract]:A ring R is called a separable ring, if the right R module A and B A Wok A are projected to any finitely generated R module A and B = A Wei B = B Wei B Wei A = B = B = B = B = B = B = B = B = B = B = B Assuming that R is permutation separable ring, where 2 invertible a-a ~ + 3 鈭,
本文编号:1833788
本文链接:https://www.wllwen.com/kejilunwen/yysx/1833788.html