一类拟线性Kirchhoff型椭圆方程组多解的存在性
发布时间:2018-05-16 22:05
本文选题:拟线性椭圆方程组 + Nehari流形 ; 参考:《数学物理学报》2017年04期
【摘要】:该文运用Nehari流形和纤维环映射方法研究非局部拟线性椭圆方程组■非平凡弱解的存在性,其中Ω銰R~N是一边界光滑的有界区域,Δ_pu=div(|%絬|~(p-2)%絬)是p-拉普拉斯算子,1pN,α1,β1,α+βpp(κ+1)rp~*(p~*=(pN)/(N-p)若Np,p~*=∞若N≤p),λ,μ0,h(x),g_1(x),g_2(x)∈C(Ω)在Ω上可变号,M(s)=a+bs~κ,a,b,k0.
[Abstract]:In this paper, the existence of nontrivial weak solutions for nonlocal quasilinear elliptic equations is studied by using Nehari manifold and fiber ring mapping method. Where 惟 ~ r ~ n is a bounded region with smooth boundary, and 螖 _ S _ pudivo (% ~ + N ~ -p) if N 鈮,
本文编号:1898595
本文链接:https://www.wllwen.com/kejilunwen/yysx/1898595.html