k-逗号码和k-逗号关联码的刻画及d-码的性质
发布时间:2018-06-12 09:31
本文选题:内缀码 + 逗号自由码 ; 参考:《云南大学》2015年硕士论文
【摘要】:2011年,加拿大学者Cui,B提出了k-逗号码和k-逗号关联,得到了每个k-逗号码是内缀码,每个k-逗号关联码是双缀码,指数为m的k-逗号关联码是指数为m+1的k--逗号关联码,以及k-逗号码和k-逗号关联码的一些封闭性质等结论.本文从内缀码的角度对k-逗号码进行了详细的刻画,从双缀码的角度对k-逗号关联码进行了等价刻画,以及在何种条件下指数为m的k-逗号关联码与指数为m+1的k-逗号关联码等价.在保持语言的同态映射方面,本文研究了保持n-逗号自由码、n-关联码、k-逗号码、n-k-逗号码、k-逗号关联码、n-k-逗号关联码等语言的同态映射的充分条件. 1995年,台湾学者Lin,Y.Y指出所有的的d-码是纯码.另一位台湾学者Fan,C.M得到了一个非空语言是固码当且仅当它既是d-码又是逗号自由码.本文研究了d-码在并、交、补、乘积、非擦除同态映射运算下的封闭性,d-码与内缀码、逗号自由码等其它代数码的关系,得到了任意两个d-码的在并运算、乘积运算下封闭,以及保持d-码的同态映射的充分必要条件等结论.
[Abstract]:In 2011, the Canadian scholar Cuibian B proposed k-tease number and k-comma correlation, and obtained that each k-tease number is an infix code, each kcomma correlation code is a double-affix code, and the k-comma correlation code with exponent m is a k-comma correlation code with exponent M1. And some closed properties of k- tease number and k- comma correlation code, etc. In this paper, the k-comma correlation code is described in detail from the angle of infix code, and the equivalent description of k-comma correlation code is given from the point of view of double affix code. And under what conditions the kcomma correlation code with exponent m is equivalent to the kcomma correlation code with exponent M1. In this paper, we study the sufficient conditions for preserving homomorphic mapping of languages such as n-comma free code / n-correlation code / teaser number / k- tease code / comma correlation code etc. The Taiwanese scholar Linke Y. Y points out that all d- codes are pure codes. Another Taiwanese scholar, Fann C.M, obtained a nonempty language which is a fixed code if and only if it is both a d- code and a comma free code. In this paper, we study the relation between d- codes in union, intersection, complement, product, non-erasure homomorphic mapping operation and other generation codes, such as infix code, comma free code, etc. The necessary and sufficient conditions for preserving the homomorphic mapping of d- codes are also discussed.
【学位授予单位】:云南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:O157.5
【共引文献】
相关期刊论文 前1条
1 刘莉;徐颖吾;;保持独立语言和关联码的映射(英文)[J];纺织高校基础科学学报;2014年02期
,本文编号:2009214
本文链接:https://www.wllwen.com/kejilunwen/yysx/2009214.html