分数Brown运动随机固定资产模型数值解的均方散逸性
发布时间:2018-06-22 14:14
本文选题:分数Brown运动 + Bellman-Gronwall型引理 ; 参考:《四川师范大学学报(自然科学版)》2017年05期
【摘要】:讨论一类带分数Brown运动随机固定资产模型数值解的均方散逸性.在一定条件下,根据It?公式和Bellman-Gronwall型引理,得出了模型具有均方散逸性.分别利用分步倒向Euler方法和补偿倒向Euler方法讨论数值解的均方散逸性,并给出数值解散逸存在的充分条件,通过数值算例对所给出的结论进行验证.
[Abstract]:In this paper, the mean square escape of the numerical solution of a stochastic fixed asset model with fractional Brownian motion is discussed. Under certain conditions, according to ITT? The formula and Bellman-Gronwall Lemma show that the model has the property of mean-square escape. By using step backward Euler method and compensating backward Euler method, the mean square escape of numerical solutions is discussed, and the sufficient conditions for the existence of numerical dissolution escape are given, and the results are verified by numerical examples.
【作者单位】: 北方民族大学数学与信息科学学院;宁夏大学数学与计算机学院;
【基金】:国家自然科学基金(11461053)
【分类号】:O241.8
,
本文编号:2053093
本文链接:https://www.wllwen.com/kejilunwen/yysx/2053093.html