几类渐近线性椭圆型问题的研究
发布时间:2018-06-25 09:09
本文选题:渐近线性方程组 + 非平凡解 ; 参考:《中南民族大学》2015年硕士论文
【摘要】:本文主要考虑三类无穷远处具有渐近线性的半线性椭圆型方程及方程组的非平凡解的存在性.第一章我们简单介绍了相关背景与预备知识.第二章,我们研究带有Hardy项的半线性奇异椭圆方程:利用山路定理,证明了当f(u)是渐近线性时,方程(0-1)在R~N中非平凡解的存在性.第三章,研究如下带参数的半线性椭圆型方程组:其中Ω为R~N中的有界光滑区域,λ,u非负,N≥3.我们考虑非线性项不满足增长性条件,证明了如果λμ≥1,方程组(0-2)在H_0~1(Ω)×H_0~1(Ω)中至少有一个非平凡解.第四章,我们研究半线性椭圆型方程组:非平凡解的存在性.其中λμ1且lλ+1,mμ+1由Sobolev嵌入定理可知H_1~1(R~N)紧嵌入到L~P(R~N)中,我们在H_r~1(R~N)中运用变分技巧来讨论该问题非平凡解的存在性.
[Abstract]:In this paper, we consider the existence of nontrivial solutions for three kinds of semilinear elliptic equations with asymptote linearity at infinity. In the first chapter, we briefly introduce the relevant background and preparatory knowledge. In chapter 2, we study the semilinear singular elliptic equation with Hardy term: by using the mountain pass theorem, we prove the existence of the nontrivial solution of the equation (0-1) in RGN when f (u) is asymptotically linear. In chapter 3, the following semilinear elliptic equations with parameters are studied: where 惟 is a bounded smooth region in RN, and 位 u is nonnegative n 鈮,
本文编号:2065409
本文链接:https://www.wllwen.com/kejilunwen/yysx/2065409.html