基于随机矩阵理论的人体脉搏数据分析方法研究
发布时间:2018-07-07 15:34
本文选题:随机矩阵理论 + 脉搏数据分析 ; 参考:《北京邮电大学》2017年硕士论文
【摘要】:随机矩阵理论(Random Matrix Theory, RMT)是概率统计学科的重要研究领域,运用随机矩阵理论对复杂系统进行分析是研究其特性的重要途径之一。它通过对复杂系统的能量谱分布以及本征值分布进行统计分析揭示实际数据中的关联行为特征,并以此对复杂系统的结构和性质进行研究和分析。中医认为,脉搏波在节律、强度、形态等方面呈现出信息能够反映出人体心血管系统和神经系统中许多生理病理的血流特性。以往的脉搏分析方法多结合医学知识进行分析,对于常识及数据精度的要求较高。人体是一个复杂的系统,利用随机矩阵理论处理脉搏波中人体的生理病理信息对分析脉搏数据具有重要价值。本文将根据随机矩阵理论(Random Matrix Theory,RMT)中数据建模分析的方法来处理脉搏数据,利用单环定理(Single Ring Law)对人体的脉搏数据进行处理,分析对应状态。大致分为四个部分:1.结合随机矩阵理论与脉学知识分析其在处理脉搏数据方面的可行性,并对特殊矩阵进行仿真分析。2.以飞识科技有限公司开发的脉搏传感器作为脉搏采集装置,设计数据采集方案,采集数十名在校学生志愿者及中医科学院西苑医院心血管病人的脉搏数据。3.将测得的脉搏数据进行预处理后进行数据建模。按照一定的矩阵处理方式对其进行处理得到特定的谱分布并研究其经验谱分布的渐进行为或偏离行为。4.结合四象限模式从中选择处于不同象限的数据进行纵向和横向对比,对其谱分布情况进行分析对比,得出状态与脉搏的对应关系。
[Abstract]:Random Matrix Theory (RMT) is an important research field in the field of probability and statistics, and the use of stochastic matrix theory to analyze complex systems is one of the important ways to study its characteristics. Through the statistical analysis of the energy spectrum distribution and eigenvalue distribution of complex systems, it reveals the correlation behavior characteristics in actual data, and studies and analyzes the structure and properties of complex systems. Chinese medicine believes that pulse wave in rhythm, intensity, morphology and other aspects of information can reflect the cardiovascular system and nervous system in many physiological and pathological characteristics of blood flow. Previous pulse analysis methods combined with medical knowledge require high common sense and data accuracy. Human body is a complex system. It is of great value to analyze pulse data by using random matrix theory to deal with physiological and pathological information of human body in pulse wave. In this paper, pulse data are processed according to the method of data modeling and analysis in Random Matrix Theory (RMT), and the pulse data of human body are processed by single Ring Law, and the corresponding states are analyzed. It is roughly divided into four parts: one. Combined with random matrix theory and pulse knowledge, the feasibility of processing pulse data is analyzed, and the special matrix is simulated and analyzed. Using the pulse sensor developed by Feike Science and Technology Co., Ltd as the pulse acquisition device, a data acquisition scheme was designed to collect the pulse data of dozens of student volunteers and cardiovascular patients in Xiyuan Hospital, Chinese Academy of Sciences. The measured pulse data are preprocessed and modeled. According to a certain matrix processing method, the specific spectral distribution is obtained and the asymptotic behavior or deviation behavior of the empirical spectral distribution is studied. In combination with the four-quadrant model, the data in different quadrants are selected for longitudinal and horizontal comparison, and the spectrum distribution is analyzed and compared, and the corresponding relationship between state and pulse is obtained.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O213
【相似文献】
相关期刊论文 前10条
1 朱建国;;一种双随机矩阵变换的应用方法[J];南京工业职业技术学院学报;2009年04期
2 任芳国;高莹;;随机矩阵的范数[J];东北师大学报(自然科学版);2012年01期
3 康继鼎;;随机矩阵的一重要性质[J];河北地质学院学报;1979年02期
4 杨载朴;朱庆国;;随机矩阵的一些性质[J];盐城工学院学报;1997年02期
5 吴国富,王东谦;正态随机矩阵的相关矩阵估计[J];徐州建筑职业技术学院学报;2003年01期
6 周硕;吴柏生;;广义双随机矩阵反问题及其应用[J];数学的实践与认识;2008年15期
7 曾杏元;;有关随机矩阵领域最新研究动态与进展的综述报告[J];数学理论与应用;2011年03期
8 曾杏元;侯振挺;;定向最后通过渗流和随机矩阵(英文)[J];数学进展;2013年03期
9 许宝,
本文编号:2105410
本文链接:https://www.wllwen.com/kejilunwen/yysx/2105410.html